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Abstract

A reduced form model for the join dynamics of liquidity and asset prices is proposed. The

self-reinforcing feedback between credit creation and the market value of the financial assets

employed as collateral in the bank loans (the so called financial accelerator) is modeled by a

coupled non–linear stochastic process. We show that such non-linear interaction produces ex-

plosive dynamics in the financial variables announcing a regime change in finite time in the form

of a market crash which can also be modeled by the same coupled non–linear stochastic process

with inverted signs. Casting the financial accelerator dynamics into a highly stylized macroe-

conomic model, we study its macro-dynamics implications for real economy and for monetary

policy interventions.

JEL classification: G01, G17, C53
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1. Introduction

In our current monetary system, liquidity is mainly created by the credit issued by the “banking

systems”, considered in a broad sense, i.e., including the shadow banking system and other

financial institutions behaving de facto like banks. Credit creation is subject to cycles which

often coincide with those in economic activity and asset prices. The coincidence of these cycles

has already been well documented in the policy-oriented literature (e.g. IMF 2000, BIS 2001).

However, only few studies have tried to formally assess the link between liquidity dynamics and

the episodes of booms and bursts in the financial markets.

In standard real business cycle models, credit do not have any macroeconomic effects. Moreover,

credit aggregates, in particular bank credit that constitutes the closest proxy for money, are

usually assumed to be mainly demand-driven (Bernanke and Blinder 1988, Fase 1995, Calza

et al. 2001), depending on economic activity and financing costs. However, driven by the

implication of asymmetric information, new theoretical approaches have attributed an important

role to credit aggregates in the development of the business cycle (e.g. Bernanke et al. 1999 and

Kiyotaki and Moore 1997).

Moreover, on the empirical side, a growing body of literature (see Schularick and Taylor 2012

and reference therein) consistently found that an acceleration of credit supply is the single best

predictor of future financial instability (a result which seems to be robust to the inclusion of

various other nominal and real variables). These empirical results on extensive sets of historical

data, vindicate scholars like Minsky (1975, 1982) and Kindleberger (2005) who argued that

the financial system is prone to endogenously generate cycles of credit boom and bursts. In

particular, Minsky (1975, 1982) argued that financial systems are fundamentally unstable due

to the procyclicality between debt and speculation (see also Keen, 2011 for a concise exposition).

Other scholars have emphasized the importance of how liquidity flows into the economic system.

Werner (2005) has argued that the effect of credit creation depends on how the money injected

in the economy is used for. He identifies three types of credit: for production, for consumption

and for speculation. Only credit creation for production leads to GDP growth by increasing the

quantity of goods and services. Credit creation for consumption increases GDP but it does so

through inflation and not real growth. In this case, more money circulates in the economy but

the quantity of goods and services remain the same. Credit creation for financial transactions

increases the amount of money in financial markets, leads to asset inflation and is not part of
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GDP. Excessive credit creation of the last two cases can eventually lead to banking and economic

crises.

Because of information asymmetries, agency problems, and incomplete contracts, banks tend to

preferably extend loans with real or financial asset as collateral (see Aghion and Bolton 1992,

Hart and Moore, 1994, 1998). Higher collaterals, in fact, reduce the influence of asymmetric

information and improve lending conditions. This tendency of the banks for collateralizing loans

introduces an important structure in the way money flows into the economy. Hendry (1984)

and Muellbauer (1992) showed that availability of bank loans backed with some collateral asset

is a major factor in the rise of those asset prices. When increasing new credit is granted for

financial investments (so that the collateral of this credit becomes the investments itself) because

of the relatively fixed short-run supply of collateral, it will tend to increase the corresponding

financial prices. For example, a rise in the amount of issued mortgage will make house prices

increase (see e.g. Greiber and Setzer 2008), while easy lending (backed by financial asset) to,

for instance, hedge funds, Special Investment Vehicles (SIV), and other financial investors will

tend to increase financial asset prices.

Because borrowers are constrained in their demand for credit by the values of their collateral

assets, an increase in their prices will expand their borrowing capacity augmenting the creation of

liquidity which, in turn, increases the collateral prices in a self-reinforcing mechanism. Expansion

of asset collateralizing loans push up the price of collateral, allowing bank to expand their

collateralized loan books. Similar self-reinforcing interactions have been investigated in the

literature which usually referred to them as “financial accelerator” mechanisms (Stein 1998,

Bernanke and Gertler 1989, Bernanke, Gertler and Gilchrist 1996, 1999 and Kiyotaki and Moore

1997). The existence of a close link between ample liquidity and bubbles is also reported by

practitioners and financial commentators.2

In addition, the sustained growth of liquidity and financial prices during the boom phase will

create capital gains that will easily repay interest payment and make financial investments appear

safe and profitable, thereby reducing the estimated probability of default, the risk premia, and

the costs for access to external funds. Because investing in the roaring markets will yield high

and consistent capital gains, more and more investments will be re-directed from the real sector

2Mauldin and Tepper (2011), for instance, recently wrote “[...] liquidity has to go somewhere, and emerging

markets look like the most likely destination [...] Emerging markets could easily be the next bubble.”.
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to the financial one. During this period, competition among banks for higher profits will induce

them to increase their financial leverage. Moreover, firms will also start to invest more on

financial instruments and financial acquisitions (e.g. stocks repurchases) and less on physical

and productive investments (such as new machineries or R&D). Hence, because of the financial

accelerator and investment substitution (from real to financial sector), a growing share of new

credit will be channeled to financial investments exerting further pressure on financial prices,

which in turn will expand borrowing capacity and hence banks lending to financial investments.

As the financialization of the economy increases, the increasing reliance by firms on earnings

realized through financial channels progressively marginalize the role of the real economy in the

global economic growth and also leads to significant income inequality (Lin and Tomaskovic-

Devey, 2011). This has a negative effect on the growth of the real economy, leading eventually

to the change of regime from boom to bust.

In this paper we focus on the macro-dynamic implications of the financial accelerator by propos-

ing a simple reduced form model3 for the Minskian–type of dynamics generated by the financial

accelerator. We start by considering credit creation as driven by the market value of the fi-

nancial asset employed as collateral in bank loans. This leads to a self-reinforcing mechanism

between financial prices and liquidity that we model by coupled non–linear stochastic processes.

We show that the resulting non–linear dynamics are characterized by super-exponential growth.

Unchecked, such super-exponential growth would lead to a finite time singularity. The singular-

ity expresses the unsustainable dynamics of the economy and announces a regime change, such

as a crash and/or economic recession. During a financial crisis, a self-reinforcing interaction

between liquidity and collateral prices also develops. Being the exact image of the financial

accelerator in reverse, we model financial crises with the same coupled non–linear stochastic

processes used in the financial accelerator only with the opposite sign. The occurrence of the

sign inversion, i.e, the shift of the financial accelerator into a downward spiral, is modeled as a

stochastic regime switching process with endogenous transition probabilities.

Casting the financial accelerator dynamics into a simple macroeconomic model, we show that the

relations between liquidity and asset prices have important consequences on general macroeco-

3We use the term “reduced form model” in the broad sense of directly modelling the dynamics of aggregated

quantities. For standard neoclassical microfoundations of the financial accelerator see Stein 1998, Bernanke and

Gertler 1989, Bernanke, Gertler and Gilchrist 1996, 1999 and Kiyotaki and Moore 1997.
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nomic variables. Fluctuations in asset prices and liquidity heavily impact on borrowing capacity,

cost of external funds, and probability of default, hence, strongly affecting aggregate demand

and real GDP. Moreover, by providing a quantitative modeling of the non-linear feedback dy-

namics at work in the financial sector, our model permits to have a first quantitative comparison

of alternative intervention policies within a non-linear Minskian type of framework. Finally, ex-

ploiting the implication of the super-exponential dynamics of prices on log returns, we propose

a simple modification of the standard GARCH model, that we coin FTS-GARCH, with which

it becomes possible to investigate the presence of finite time singularity behaviors, and hence

bubbles, in financial series. We apply this procedure to various financial time series during a

bubble period and find evidence for super-exponential behaviors.

Our analysis is related to the literature on the credit channel view of monetary policy trans-

mission and on that of non–linear feedback mechanisms leading to financial bubbles and bursts.

Some recent papers addressing these topics (mainly from an empirical point of view) include

Adrian and Shin (2008) on the procyclical nature of leverage, Benmelech and Bergman (2009)

on credit traps, and Sornette and Woodard (2009), Johansen and Sornette (2010), and Lin Ren

and Sornette (2009) on the diagnostic and modeling of financial bubbles with super-exponential

price dynamics.

The paper is organized as follows. Section 2 describes the coupled stochastic processes induced

by the financial accelerator mechanism for the dynamics of financial prices and financial in-

vestments. Section 3 describes the real sector part of the macroeconomic model. Section 4

illustrates the dynamic behavior of the model by means of Monte Carlo simulations. Section 5

proposes the modified FTS-GARCH model to identify the presence of bubble and applies it on

empirical data. Section 6 summarizes the implications of the model for economic stability and

policy decisions. The Appendix presents the exact solution of the finite-time singular behavior

of a deterministic toy version of the model.

2. Liquidity and asset prices: A reduced form model for the financial accelerator

In this section we present the reduced form model for the dynamics of financial prices and

financial investments induced by the financial accelerator mechanism.
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2.1. Reduced form model of money channeled to the financial market and financial prices

Let us denoteMF , the amount of money channeled to the financial market, andMR, the amount

absorbed by the real sector. We model the self-reinforcing interaction between money used for

financial investments MF and financial prices P with the following coupled non-linear stochastic

system:

dMF
t = αPtM

F
t dt+ σMFMF

t dWMF

t . (1)

dPt = βMF
t Ptdt+ σt,PPtdW

P
t (2)

where dWMF

and dWP are two independent Brownian motions, σMF and σt,P are the volatilities

of MF and P respectively, β and α are scalar parameters. To take into account the well known

presence of heteroskedasticity in the volatility of financial assets, we assume σt,P to follow a

stochastic process (i.e. Pt is a stochastic volatility process).

The cross product αPtM
F
t in the equation for dMF

t captures the following channel of growth:

increases in collateral values Pt lead to greater lending due to the reduction in financial con-

straints, hence increasing the amount of money channeled to the financial sector. The cross

product βPtM
F
t in the equation for dPt embodies that a greater volume of lending, in turn,

increases liquidity in the corporate and household sector, which can then bid more aggressively

when acquiring collateral assets (Shleifer and Vishny, 1992), thus pushing prices up.

2.2. Approximated solution and the concept of “finite-time singularity”

The feedback between financial prices P and money channeled to financial market MF lead to a

non–linear dynamics with super–exponential behavior, as will be shown here and the following

sections.

Appendix A gives the exact solution of equations (1) and (2) for the special case σF = σP = 0, i.e.

for the purely deterministic case. In the presence of positive feedbacks of financial price on money

(α > 0) and of money on price (β > 0), the solution exhibit a finite-time singularity (FTS),

i.e., the standard exponential growth obtained in the standard case where the two equations (1)

and (2) are decoupled (i.e., Pt is fixed to a constant P in (1) to obtain MF
t = MF

0 · exp[αP · t]

or Mt is held equal to a constant M in (2) to obtain Pt = P0 · exp[βM · t]) is replaced by a

super-exponential growth which is unsustainable: divergences appear in finite time, signaling a

change of regime.
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Such finite-time singularities are not monsters that exist only in the imagination of mathemati-

cians. They reflect the deep fact that positive feedback may often lead to solutions that exit

only over a finite duration, hence forcing to take into account new mechanisms and processes

that have to come into play as the singularity is approached. The mathematical singularity is

the signature that positive feedbacks can only dominate the dynamics over a finite time interval,

and the finite-time singularity just announces the coming change of regime to a new behavior

dominated by different controlling mechanisms. The insistence by economists to work only with

models for which existence of solutions for all times can be proved has prevented the considera-

tion of models with FTS, since the solution stops to exist beyond the critical time. We believe

that this insistence on existence of solutions for all times is misplaced because it removes by

construction a rich class of transient solutions that exemplify the dynamics of instabilities that

may be a non-negligible component of the behavior of financial markets.

In endogenous growth economics, the positive feedback of human population on R&D and

productivity leading to increased carrying capacity has been noticed by Kremer (1993), reduced

in its essence to the simple equation

dp

dt
= R · p(t)1+δ , . (3)

For δ = 0, there is no positive feedbacks and the solution is the standard Malthusian exponential

growth. For δ > 0, the solution of equation (3) reads

p(t) =
p0

(1− t/tc)1/δ
iff δ > 0 , (4)

where

tc =
1

δR
p
−1/δ
0

, (5)

with the initial condition p(t = 0) = p0. Here, the critical time tc at which the solution diverges

is determined from the parameters R and δ of equation (3) and the initial population p0. As

Appendix A shows, the positive feedbacks of price on money and money on price leads exactly

to this reduced form dM/dt ' M1+δ, with δ = 1. Note also that solution (4) with (5) recovers

the standard exponential solution p(t) = p0e
Rt in the limit δ → 0+ as it should. This can be

seen by using the expansion (1 − t/tc)
−1/δ = exp[−(1/δ) ln(1 − t/tc)] ' exp[(1/δ)(t/tc)] = eRt

for t � tc → +∞ for δ → 0+.

The singular solution (4) was first discussed by von Foerster et al. (1960) (see Umpleby (1990) for

assessments of the relative merits of the “natural science” versus the “demographic” approach,
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Kremer (1993) for an economic underpinning, and Johansen and Sornette (2001); Korotayev

et al. (2006) for extensive generalizations). In ecology, the positive correlation between pop-

ulation density and the per capita population growth rate at the origin of the FTS behavior

(4) is known as the Allee effect, see for instance Stephens et al. (1999). More generally, Allee

discovered the existence of an often present positive relationship between some components of

individual fitness and either numbers or density of conspecifics. The Allee effect is usually used

to refer to the self-reinforcing feedbacks that promote accelerate extinction of species, that can

be modeled by finite-time crossing of zero, see Yukalov et al. (2009b). Goriely (2000) provides

a rigorous mathematical framework with a generalized version of equation (3), where the right

hand side is replaced by an arbitrary polynomial of p(t). The use of the mathematics of FTS

to describe and diagnose changes of regime is not new. For instance, we refer to Johansen and

Sornette (2001); Sornette (2003) for population dynamics and financial markets, Sammis and

Sornette (2002) for applications to engineering failures and earthquakes, Sornette (2002, 2006)

for a large variety of systems, Dakos et al. (2008) for climate systems, and Scheffer et al. (2009);

Biggs et al. (2009); Drake and Griffen (2010) for environmental systems. These authors applied

the concept of dynamical phase transitions and FTS to different systems exhibiting a bifurca-

tion, crisis, catastrophe or tipping point, by showing how specific signatures can be used for

advanced warnings.

2.3. The model for financial crises

During a financial crisis, the interaction between liquidity and collateral prices also takes place

according to a positive feedback loop as follows. A significant reduction in the value of the assets

backing high leveraged positions leads to margin calls that force the borrowers to fire sale the

asset, which in turn tends to push its value down. This fall in the asset prices reduces the value

of the collateral backing the previous leveraged credit boom. A reduction in collateral prices

will then contract borrowing capacity, reducing lending and liquidity, which in turn decreases

the collateral prices further and so on (this process is well described, among others, in Adrian

and Shin 2008, Benmelech and Bergman 2009, and Acharya and Richardson 2009).

Hence, the very same mechanism that gave rise to the financial accelerator during the boom

phase is at work during the crash phase, with just a different sign in its action. Being basically

the same process as the financial accelerator with only a reversed direction, we model financial

crises with the same dynamical equations (1) and (2) with a change of signs of the parameters α
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and β. For α, β > 0, positive feedbacks lead to reinforcing accelerated growth of money supply

and prices. For α, β < 0, negative feedbacks lead to a correlated decrease of the money supply

and prices. The burst of a financial bubble occurs in our model when the sign of the parameters

α and β of the coupled equation system (1) and (2) shift from positive to negative.

This change of regimes can be effectively modeled with a regime switching model with endoge-

nous transition probabilities. We assume that both parameters α and β are controlled by an

unobserved aggregate state parameter that can live in two possible states st = {H,L} (boom and

recession). Each parameter can assume two values: α(st = H) ≡ αH > 0, α(st = L) ≡ αL < 0

and β(st = H) ≡ βH > 0, β(st = L) ≡ βL < 0. In order to capture the observed asymmetry

in the boom–burst cycle (i.e. the downhill being typically steeper than the uphill), we take

|αH | < |αL| and |βH | < |βL|. Alternately, we could generate such asymmetry by introducing

the negative effect of aggregate corporate defaults (whose dynamics will be described later) in

the equation of MF .

For the dynamics of the state variable, we follow the description of regime shifts based on a non–

linear dynamical process (Yukalov et al., 2009a), which can provide an endogenous underpinning

of Markov Chain switching models (Hamilton, 1989; Hamilton and Raj, 2002). We then propose

st to be given by the sign, positive for H and negative for L, of the variable ξt that follows the

non–linear stochastic process:

dξt = (aξt − bxtξ
2
t − cξ3t )dt+ σξdW

ξ
t and











st = H if ξt ≥ 0

st = L if ξt < 0

(6)

Hence, ξt is an asymmetric bistable process with a dynamically changing asymmetry given by

the triggering variable xt. The triggering variable xt can be function of different quantities such

as (i) the degree of mispricing (xt = f(Pt/Ft) with F representing the fundamental value of

the asset), (ii) the degree of misallocation of loans (xt = f(MF
t /MR

t )), or (iii) the degree of

financialization of the economy (xt = f(Pt/Yt) with Yt the nominal GDP).

The dynamics of ξt has, therefore, two attractors (one positive and one negative) so that the

stochastic trajectory can remain for quite a long time inside one of the corresponding trapping

regions and then jump stochastically to the other one. Both the mean time spent in each

basin of attraction and the probability of switching from one basin to the other depends on the

asymmetric coefficient xt which represents the degree of mispricing or financialization of the
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economy.

For instance, in the case of xt = log(Pt/Ft), when the economy is in the boom phase (with ξt > 0

and hence st = H), the further the market price Pt drifts away from the fundamental price Ft,

the more asymmetric the distribution of the process will be and the higher the probability of

switching to the negative attractor (with ξt < 0 and st = L). Once in the new regimes, a strong

asymmetry in the opposite direction will be needed for the system to switch again to the other

attractor. In this way, we are able to also model the typical overshooting of financial prices

below the fundamental values during a recession.

In this case, it seems also sensible to assume that the Brownian innovation dW ξ
t is highly

correlated with (if not exactly the same as) the innovation dWP
t in (2) so that a stochastic

switching from the positive state H to the negative L is triggered by a negative shock in Pt and

vice versa for the switching in the opposite direction.

3. The stylized macroeconomic model

In this section, we briefly describe the equations of motion of the other most relevant macroeco-

nomic variables of our economy: the aggregate corporate default rate and the other variables of

the real sector, which are the amount of money directly channeled to GDP related investments

and the nominal GDP.

3.1. The dynamics of aggregate corporate default rate

Let us define with Bt the total amount in value of the firm’s bankruptcies (loss given default)

occurring during the measurement period (e.g., one quarter or one year). Denoting Mt =

MF
t +MR

t the total money supply, sum of the money flowing both to the financial and to the

real economy sectors, the rate of growth mt of the total money supply Mt is simply

mt =
1

Mt

dMt

dt
. (7)

Denoting Rt the average nominal interest rate, the dynamics of the aggregate firm’s bankruptcy

or default can be modeled, in reduced form, as depending on the differential between Rt and mt

since the first variable determines the weight of the debt service while the second indicates the

dynamics of the overall liquidity circulating in the system. We thus write

dBt = (Rt −mt)Btdt+ σBBtdW
B
t , (8)
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where σB is the volatility of the bankruptcy process. Equation (8) simply says that, if the

interest rate is larger than the growth rate of money, the aggregate rate of bankruptcy tends to

increase because there will not be enough money to repay all the existing debts (principal plus

interests). In contrast, when the interest rate falls below the growth rate of money, the money

circulating will be larger than the one needed to repay the debts and hence the aggregate default

rate will tend to decline. This relationship between interest rate and default risk is supported

by a study of firm level corporate default data in the United States between 1982 and 2008

(Fridson et al., 1997) that finds significant positive contemporaneous correlations between the

changes in interest rates and aggregate default rates.

Equation (8) represents an additional mechanism (and arguably a dominant one during some

periods, such as during recessions) that operates as a transmission process for monetary policies:

ceteris paribus, when interest rates are reduced, bankruptcies in the economy decline while

when interest rates are raised the number of bankruptcies significantly increase slowing down

the economic growth. We can call this transmission mechanism of monetary policy the default

transmission channel.

3.2. The real sector

Unlike the dynamics of the amount of money channeled to the financial market MF , the dynam-

ics of the amount of money absorbed by the real sector MR
t has a growth rate negatively related

to excessively high financial prices P , because of the effect of investment substitution (from real

to financial sector) that is present when financial markets are soaring. This is captured by the

following dynamics for MR
t :

dMR
t = −θ

Pt

Ft
MR

t dt+ σMRMR
tdW

MR

t , (9)

where θ is a positive parameter and Ft is the fundamental or equilibrium price of Pt. During

the boom phase, the amount of money absorbed by the financial market will grow at a much

faster rate than the amount of money directed to the real sector. Financial prices will also rise

faster than other prices.

In order to complete the modeling of our stylized economy, we also specify the dynamics of the

nominal GDP which, in the spirit of Werner (2005) is assumed to follow:

dYt = gMR
t Ytdt− b dBt + σY YtdW

Y
t . (10)
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where g and b are positive coefficients. Equation (10) simply says that GDP tends to increase

with the amount of money channeled to the real sector MR
t , while it tends to decrease with rises

in bankruptcies (which tends to destroy or at least under-utilize technological know-how and

human capital).

3.3. The full model

Summarizing, the full model is then composed by the following system of dynamic coupled

equations:

money to financial sector: dMF
t = α(st)PtM

F
t dt+ σMFMF

t dWMF

t (11)

financial prices: dPt = β(st)M
F
t Ptdt+ σt,PPtdW

P
t (12)

money to real sector: dMR
t = −θ

Pt

Ft
MR

t dt+ σMRMR
tdW

MR

t (13)

aggregate bankruptcies: dBt = (Rt −mt)Btdt+ σBBtdW
B
t (14)

nominal GDP: dYt = gMRYtdt− b dBt + σY YtdW
Y
t (15)

with Ft the fundamental value, mt = (1/Mt)dMt/dt, Mt = MF
t + MR

t and α(st) and β(st)

taking two values α(st = H) ≡ αH > 0, α(st = L) ≡ αL < 0 and β(st = H) ≡ βH > 0,

β(st = L) ≡ βL < 0, depending on the sign of variable ξt following the non–linear stochastic

process (6).

4. Model dynamics

To gain some intuition on the dynamical properties of the non–linear stochastic processes (11-15),

we illustrate the dynamic behavior of the financial accelerator and of the stylized macroeconomic

model by means of Monte Carlo simulations. Note that MF
t and Pt are just functions of each

other, so that the Monte Carlo simulations can be decomposed into two steps: (i) generation

of the trajectories for MF
t and Pt with (11) and (12), which then (ii) impact that of MR

t (13),

which, together with MF
t , controls the dynamics of both Bt and Yt, via definition (14) and (15).

4.1. Financial accelerator

Insert Figure (A.1) about here
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Figure 1 shows the logarithm of money MF and of the price P scaled by GDP as a function

of time represented in linear unit. A straight line in such semi–log scale qualifies a standard

exponential growth with constant growth rate. The upward curvature exhibited by the MF and

P dynamics clearly indicates the existence of a super-exponential growth culminating into a

finite-time singularity. The behavior of these simulated trajectories are qualitatively similar to

those empirically observed in many countries during the periods preceding the burst of a financial

bubble. As a visual comparison, Figure A.2 shows the evolution of various stock market indices

during periods commonly identified as bubbles.

4.2. Full model

Insert Figure (A.2) about here

In Figures A.3 and A.4, we show the dynamical properties of the full model by simulating the

whole system (11-15) of dynamic equations. Again, the behavior of these simulated trajectories

are qualitatively similar to those observed empirically in many countries during the periods

before and after the burst of a financial bubble.

Insert Figures A.3 and A.4 about here

Typical of Minskian dynamics, during the growing phase of the bubble, financial markets are

soaring, there is easy and cheap access to credit, firms are making profit (though often a large

part of it is through financial activities), bankruptcy rates are low and the whole economy seems

safely growing. An ideal financial and economic new world seems to be born in which the old

bounds and constraints seem not to hold anymore.

The accelerating growth of the financial prices and financial investments makes the financial

sector grows explosively. This is not sustainable since the increasing burden of debt service

subtracts resources to the aggregate demand and tends to concentrate wealth which also reduces

the aggregate demand. In Minskian terms, the safety margins of the indebted units are reduced

and the overall fragility of the financial system increases; growth and fragility then progress

together. Because of a weakening aggregate demand and increasing leverage, the current cash

flows of many agents reach the point where they are insufficient for servicing the debt, leading

to a strong increase of the probability of bankruptcies that can reach epidemic proportions.
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When the financial prices stop growing and start declining, the very same self-reinforcing in-

teraction between money and collateral prices that gave rise to the financial accelerator will

continue to operate but now with the opposite sign. A reduction in collateral prices causes mar-

gin calls, fire sales and a contraction of contract borrowing capacity that reduces the creation

of money which, in turn, depresses the collateral prices and so on. Moreover, another effect

becomes dominant in the economy, namely the sharp increase in the default rate induced by the

contraction of money supply, as modeled by equation (1). In fact, the key differential Rt−mt in

equation (8) becomes positive making the bankruptcy rate increases as a result of the liquidity

evaporation and unbearable interest costs.

Summarizing the full boom-burst cycle, during the boom phase, financial prices and liquidity

both rise at an accelerating pace as described by equations (1, 2). The losses due to defaults

shrink thanks to the abundant liquidity pumped into the system, as modeled by equation (8).

The GDP tends to follow the general euphoric climate by trending upward. Eventually, the

real economy starts to suffer from the competition with the highly profitable and seemingly safe

investment financial products. Indeed, the level of investment in the real economy starts to

decline once the speed of the financial price growth accelerate, as given by equation (9). When

the fragility of this tumultuous growth become apparent, financial prices stop to rise and start

to invert their trends, triggering the vicious cycle of the crash, whose trigger is controlled by

the dynamics of a state variable given by equation (6). Due to the drying up of liquidity in

the system, many corporations start to suffer from funding difficulties and the bankruptcy rate

rapidly increases according to the dynamics expressed in equation (8). This, in turn, deeply

depresses aggregate demand and GDP, transmitting the crises to the real sector according to

equation (10).

To summarize, the proposed model provides a quantitative framework to quantitatively compare

alternative intervention policies and theoretically describe the empirically found strong relation

between credit and economic activity cycles. This extends quantitatively the model developed

by Keen (1995) with the quantitative simulation of the full cycle of excess credit creation, bubble

expansion followed by an implosion. For instance, Alessi and Detken (2009) compare a total of

89 early warning indicators for high-cost asset price boom/bust, finding as the best indicators

the global M1 gap and the global private credit gap (defined as the weighted average across
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countries of detrended private credit to GDP ratios).4

4.3. Temporary monetary policy interventions

In this section, we simulate the reaction of the macroeconomic variables in our model to two

different monetary interventions following a credit crunch induced by the bubble burst. A first

monetary intervention is an injection of an amount of money equal to 10% of the total money

supply in the financial sector. This corresponds to simulating a positive jump in the MF and P

dynamics. This type of intervention approximates the Quantitative Easing policies followed by

the US Federal Reserve after the 2008 crisis, as well as the one of other Central Banks around

the world (European Central Bank, Bank of England, Bank of Japan).

The second intervention is an injection of an equal amount of money (10% of the total money

supply) in the real sector obtained by simulating a sudden increase in MR. This second strategy

approximate (only very partially) the policy followed by the Australian Government in 2009 that

provided a cash handout of 950$ to every Australian taxpayer who earned less than 80,000$

during the 2007-8 fiscal year. Another example is the 2011 injection of money by the Swiss

Federal government to its Commission for Technology and Innovation5, which is in charge with

promoting entrepreneurship as well as helping the development of start-up companies.

Insert Figure (A.5) about here

From the observation of the results of the simulations showed in Figure (A.5), a one shot inter-

vention injecting 10% of total money stock on MR seems to be able to slow down the decline

of the GDP Y , while the same intervention on MF seems to have only transitory effects on the

financial market but none on the real sector.

4This interesting result has also been cited by the President of the European Central Bank, Jean-Claude

Trichet, during his speech on the occasion of the Susan Bies Lecture, held at Evanston, Illinois on 27 April 2010:

“Research conducted at the ECB and elsewhere points to a link between boom-bust financial cycles and the

evolution of broad measures of money and credit. For example, the ratio of global credit to global GDP offers

an indication of nascent financial stress. The departure of this ratio from its historical trend offers a signal of

emerging financial imbalances and asset price misalignment.”.
5http://www.kti.admin.ch/index.html?lang=en
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4.4. Permanent monetary policy interventions

A more effective intervention would be a permanent monetary policy pursuing the goal of keeping

the total amount of money M constant (i.e. compensating the contraction in money supply

coming from the declining financial sector). In the first type of permanent intervention we

consider here, the compensation of the lost liquidity is performed by injecting liquidity in the

financial markets, i.e. on MF and P . In the second type of permanent intervention, the liquidity

is instead permanently injected on the real sector through MR.

Insert Figure (A.6) about here

In this case, the difference between a permanent intervention which injects the lost liquidity in

the financial sector or in the real sector is even more apparent: the intervention on the real sector

immediately stabilizes Y and the default rate. In contrast, the intervention on MF stabilizes

the financial sector alone while not being able to stop the decline of the GDP Y and the increase

in corporate defaults B (see Figure A.6).

Our results corroborate the conclusions in (Keen, 2011), which presents simulations of a mone-

tary model and the effect of various types of interventions during a credit crunch. With similar

intervention amplitudes, Keen (2011) showed that the debtors’ bailout is more effective according

to various metrics that include lower unemployment, higher firms’ profits and workers’ wages,

except for one metric, the banks’ income. Similarly to our result, Keen (2011, p. 369-370 and

p. 373) finds that “not only do [the bankers] do better under their bailout than when anything

is done, they do worse if the bailout goes to firms or workers than if there is no bailout at all.”

Our simulations actually make a stronger point by showing the possibility to stabilize the GDP

and resume growth by specifically targeting the intervention to the productive real part of the

economy.

5. Empirical analysis: Bubble detection

In this section, we exploit the implications of the proposed model on the dynamics of financial

asset returns to suggest a procedure for identifying the presence of bubbles (defined as period of

faster than exponential growth) in both a static (ex-post identification) and dynamic (real-time

detection) framework.
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5.1. The FTS-GARCH model

As Appendix A shows, the positive feedbacks of price on money and money on price leads to a

finite time singular (FTS) dynamics in which both M and P follow a self–reinforcing dynamics

that can be captured by the simple equation of the type dX/dt ' X1+δ , with δ > 1. This means

that during a bubble and a crash, price growth and decline depend on price levels. Defining

rt ≡ ln(Pt) − ln(Pt−1), a FTS dynamics then implies that the conditional mean of rt is a

function of the price level Pt.
6 Since the GARCH process provides a reasonable description of

the time changing volatility that characterizes financial asset returns, we propose to model rt

as a GARCH model in which a FTS dynamics in the conditional mean return is added. The

resulting FTS-GARCH model capturing these two dynamical features of financial prices then

reads:

rt = µ+ γ(st)Pt−1 + εt (16)

σ2
t,P = ω + αP ε

2
t−1 + βPσ

2
t−1,P (17)

where εt = σt,P zt, γ(st) is a state dependent parameter taking positive (during bubbles) or

negative (during crashes) values depending on the state of the economy st, and ω, αP , βP are

positive parameters.

In a spirit similar to that of Phillips, Wu and Yu (2011), we test γ(st) = 0 under the null

hypothesis that the price process Pt is a random walk with drift or a trend stationary process,

cases in which the usual t-statistics have standard asymptotic distribution (Hamilton 1994).7

We then interpret the rejection of the null hypothesis of γ(st) = 0 as an evidence of the presence

of a FTS dynamics and thus of a bubble.8

6The existence of this dependence has been recently shown to commonly appears in lab experiments by Hüsler

et al. (2012) who demonstrate, with high statistical significance, that these laboratory bubbles have a tendency

to grow faster than exponential due to the positive feedback generated by traders anchoring their expectations of

future returns on past prices rather than realized returns.
7Standard estimation methods for the γ parameter remain valid in presence of general non-stationary regres-

sors with stationary error terms: the estimator becomes super-consistent, i.e. the speed of convergence to the

asymptotic distribution becomes faster than the standard
√
n.

8To our knowledge, a formal test which directly test the null hypothesis of FTS dynamics in this setting is not

available in the literature. The development of such a test is beyond the scope of the present paper and will be

the subject of future studies. In a different direction, Lin et al. (2009) and Lin and Sornette (2011) have proposed

non-linear transformations to map the FTS dynamics into a stationary ones on which more standard tests can be
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[Insert Table A.1 about here]

We then investigate the existence of a FTS dynamics (identifying the presence of a bubble) in

various assets during periods related to well-known bubble growths (when γ(st) is expected to be

positive): the S&P 500 index over two different periods 1968-2000 and 1977-1987, the NASDAQ

Composite index from 1988 to 2000, the German DAX index and the STOXX 50 index from

1994 to 1998, and the NIKKEI 225 index from 1973 to 1990.

Table A.1 reports the results of the estimation of the FTS-GARCH model defined by Eq. (16),

(17). The t-statistics for the FTS parameter γ are all significant at the standard 95% confidence

level. The rejection of the null hypothesis γ = 0 suggests the presence of a FTS dynamics

in these series during the considered time spans. These indices were indeed characterized by

well-known strong bubbles during these periods (as for instance, the bubble of 1980-1987 ending

in the Oct. 1987 crash for the S&P 500 index and the ICT bubble from 1995 to 2000 for the

NASDAQ index ending in the April 2000 crash). Hence, the identification of a significant FTS

γ parameter suggests the possibility to statistically diagnose the presence of bubbles in financial

time series.

The ability of the FTS-GARCH model to capture the main dynamic feature of a self-reinforcing

process makes it also useful for the estimation of our reduced form model for the financial

accelerator. Indeed, one could estimate the parameters in equations (1) and (2) with an indirect

inference approach with the FTS-GARCH as an auxiliary model. Hence, by estimating a process

such as the FTS-GARCH model on both the empirical and simulated data and minimizing the

discrepancy between the two sets of parameters of the auxiliary model, one can get estimates

for the parameters in equations (1) and (2). The same indirect inference approach could be

analogously used to estimate the parameters of the other equations in the system by using their

discrete time counterparts as auxiliary models. Results obtained by this estimation approach

will be reported elsewhere.

5.2. Real-time bubble detection

In order to construct an indicator for the existence of bubbles working in real time, we propose

to investigate the dynamics of the significance of the FTS γ parameter during the build up of

applied.
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a bubble. The dynamics of the t-statistics is obtained by estimating the FTS-GARCH model

over a daily moving window. Using windows with longer time span would permit to identify

bubbles with long build-up periods while using windows with shorter time spans tend to pick up

bubbles that develop over shorter periods. Given that the build-up period for any given bubble

is specific to it and varies from bubble to bubble, we select the length of the moving window for

our analysis to be approximately close to the time spanned by bubble.

Figures A.7-A.11 show the evolution of the t-statistics for the FTS parameter γ for the various

series together with their (rescaled) asset prices (also magnifying their evolutions around the

peak of the bubbles). Comparing the dynamics of the t-statistics with that of the corresponding

price, we notice that, as the bubble develops, the t-statistics tends to steadily increases becoming

more and more significant towards the peak of the bubble, where it reaches its maximum value

(often in advance of the maximum of the prices). These results, then suggest that, by looking

at the evolution of the significance of the FTS γ parameter, it could be possible to identify the

build up of a bubble in real-time.

6. Conclusions

We have develop a reduced form model embodying the Minskian mechanism of financial bubbles,

based on feedback loops between collateral values, lending, and liquidity, leading to what is often

referred to as the financial accelerator. In a nutshell, increases in collateral values permit an

increase in lending due to the relaxation of borrower financial constraints. Greater lending, in

turn, increases liquidity in the financial sector which tends, through more aggressive bids, to

further increase the values of the collateral assets.

The financial bubble fueled by the growing credit expansion through the financial accelerator

leads to super-exponential dynamics of the financial variables that would end, if unchecked, into

finite-time singularities, i.e. explosive behavior in finite time. At the same time, investments

in the real sector do not only grow slowly but progressively become vampirised (through the

substitution effect) by the financial sector. The different growth rate between real and financial

sectors make the two corresponding dynamics diverge over time. At some point (the Minsky

moment), the shrinking basis of the real sector will cease to sustain the growing pyramid of the

financial sector and the system will suddenly collapse. The bigger the bubble, the higher is the

potential fall of the global economy.
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Financial bubbles and crashes are here viewed as a systematic byproduct of the way money

is issued and channeled in the economy. The accelerating behavior of the money dynamics

imposes an ever growing increase of the amount of money in the system. Moreover, instead of

openly manifest itself through inflation in goods and services prices, the excess of money creation

disguises itself in the prices of financial assets which instead covertly accelerate (through the

financial accelerator mechanism) the growth of money until the complete collapse of the system

occurs.

The proposed model provides a first quantitative framework to quantitatively compare alterna-

tive intervention policies taking in to account the non-linear feedback characterizing a Minskian

type of financial dynamics. Moreover, by exploiting the implications of the model on the finan-

cial asset time series, we showed that the proposed model can help identifying, not only ex-post

but also in real-time, the presence of a bubble in a financial time series, representing a possible

highly valuable tool for regulators and supervising authorities.
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Appendix

AppendixA. Finite-time singular behavior of a deterministic toy version of the

model

We consider the system of equations:

dM

dt
= αMP , (A.1)

dP

dt
= βMP . (A.2)

derived from (1) and (2) in the deterministic case σF = σP = 0.

Equations (A.1) and (A.2) imply
1

α

dM

dt
=

1

β

dP

dt
= MP , (A.3)

and therefore

P (t) =
β

α
(M(t)− c) , (A.4)

where the constant c is determined from the values P0 and M0 of P (t) and M(t) at t = 0:

c = M0 − α

β
P0 . (A.5)

Putting expression (A.4) in (A.1) yields
dM

dt
= βM(M − c) . (A.6)

This equation (A.6) can be integrated exactly and its solution is

M(t) =
c

1− Aeβct
, (A.7)

where A is a constant of integration such that c/(1−A) = M0. Note that βc = βM0−αP0, which can be positive

or negative.

Consider α > 0 and β > 0, corresponding to local positive growth in equations (A.1) and (A.2). Three types of

finite-time singularity (FTS) exist.

1. Finite-time singularity (FTS) of type 1: c > 0, that is, βM0 > αP0. Then, 0 < A < 1 and M(t)

exhibits a FTS, i.e., it explodes to infinity in finite time. Indeed, there is a finite time tc = −(βc)−1 lnA,

which is strictly positive, such that the denominator 1 − Aeβctc vanishes. Close to this time, we expand

the exponential to obtain

1− Aeβct = 1− Aeβc(tc+t−tc) ≈ 1−Aeβctc [1 + βc(t− tc)] = κ(tc − t) , with κ ≡ βcAeβctc . (A.8)

This implies that, close to the critical point tc, its behavior is M(t) is given to leading order by the

hyperbolic divergence

M(t) ' c

κ
· 1

tc − t
. (A.9)

This retrieves the solution ∼ 1/(tc − t) directly obtained from dM/dt = βM2, which is derived from (A.6)

by neglecting the c term for large M in the rhs βM(M − c).
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2. Finite-time singularity of type 2: c < 0, that is, βM0 < αP0. Then, A > 1 and M(t) also exhibits a

finite-time singularity as it is of the form

M(t) =
|c|

Ae−β|c|t − 1
. (A.10)

The singularity occurs when the denominator crosses 0 and develops with the same hyperbolic shape as

(A.9).

3. Finite-time singularity of type 3: c = 0, that is, βM0 = αP0. Then, we need to come back to

expression (A.6) rather than using the generation solution form (A.7), which reads

dM/dt = βM2 . (A.11)

Its solution is exactly

M(t) =
1

β
· 1

tc − t
, (A.12)

also a FTS at the critical time tc = 1/βM0 determined by the initial condition M(t = 0) = M0.

For β < 0 and c < 0, βc > 0, the solution has no FTS and the solution is

M(t) =
|c|

(1 + (|c|/M0))eβct − 1
, (A.13)

which decays exponentially to 0 at large times.

Note that β < 0 and c > 0 is possible only if α < 0 and P0 sufficiently large. In this case, M(t) decreases from

M0 > c to c at large times, according to

M(t) =
c

1− Ae−|β|ct
, (A.14)

where 0 < A < 1 is such that c/(1−A) = M0. The case M0 < c can be treated similarly.

References

Acharya, V., Richardson, M., 2009. Restoring financial stability: how to repair a failed system. Wiley.

Adrian, T., Shin, H., 2008. Liquidity and leverage. Journal of Financial Intermediation.

Aghion, P., Bolton, P., 1992. An ‘Incomplete Contracts’ Approach to Financial Contracting. Review of Economic

Studies 59, 473–494.

Alessi, L., Detken, C., 2009. Real time early warning indicators for costly asset price boom/bust cycles: A role

for global liquidity. In: International Symposium on Forecasting held in Hong Kong on. Vol. 21. p. 24.

Benmelech, E., Bergman, N., Center, L., 2009. Credit traps, working Paper.

Bernanke, B., Blinder, A., 1988. Credit, Money, and Aggregate Demand. American Economic Review 78 (2),

435–39.

Bernanke, B., Gertler, M., 1989. Agency Costs, Net Worth, and Business Fluctuations. The American Economic

Review, 14–31.

Bernanke, B., Gertler, M., Gilchrist, S., 1996. The financial accelerator and the flight to quality. The Review of

Economics and Statistics 78 (1), 1–15.

21



Bernanke, B., Gertler, M., Gilchrist, S., 1999. The Financial Accelerator in a Quantitative Business Cycle Model.

Handbook of Macroeconomics 1, 1341–1393.

Biggs, R., Carpenter, S., Brock, W., 2009. Turning back from the brink: Detecting an impending regime shift in

time to avert it. Proceedings of the National Academy of Sciences USA 106 (3), 826–831.

Calza, A., Gartner, C., Sousa, J., 2001. Modelling the Demand for Loans to the Private Sector in the Euro

AreaECB Working paper n. 55.

Dakos, V., Scheffer, M., van Nes, E., Brovkin, V., Petoukhov, V., Held, H., 2008. Slowing down as an early warning

signal for abrupt climate change, financial crashes and human birth. Proceedings of the National Academy of

Sciences USA 105 (38), 14308–14312.

Drake, J., Griffen, B., 2010. Early warning signals of extinction in deteriorating environments. Nature 456, 456–

459.

Fase, M., 1995. The demand for commercial bank loans and the lending rate. European Economic Review 39 (1),

99–115.

Fridson, M., Garman, M., Wu, S., 1997. Real interest rates and the default rate on high-yield bonds. The Journal

of Fixed Income 7 (2), 29–34.

Goriely, A., 2000. Necessary and sufficient conditions for finite time singularities in ordinary differential equations.

Journal of Differential Equations 161 (2), 422–448.

Greiber, C., Setzer, R., 2007. Money and Housing-Evidence for the Euro Area and the US. Dt. Bundesbank, Press

and Public Relations Div.

Hamilton, J., 1994. Time series analysis. Vol. 10. Cambridge Univ Press.

Hart, O., Moore, J., 1994. A Theory of Debt Based on the Inalienability of Human Capital. Quarterly Journal of

Economics 109, 841–879.

Hart, O., Moore, J., 1998. Default and Renegotiation: A Dynamic Model of Debt. Quarterly Journal of Economics

113, 1–41.

Hendry, D., 1984. Econometric modelling of house prices in the United Kingdom. Econometrics and Quantitative

Economics, 211–252.
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rt = µ+ γ(st)Pt−1 + σt,P εt

σ2
t,P = ω + αP r

2
t−1 + βPσ

2
t−1,P

mean eq. variance eq.

µ γ ω αP βP

S&P 1968-2000 2.50 ·10−2 6.30 ·10−5 9.15 ·10−3 0.067 0.924

(1.98) (2.01) (7.96) (46.5) ( 332)

S&P 1977-1987 -4.91 ·10−2 5.87 ·10−4 8.58 ·10−3 0.038 0.950

(-1.13) (2.11) (3.34) (7.51) ( 135)

NASDAQ 1988-2000 0.029 6.18 ·10−5 1.90 ·10−2 0.108 0.877

(1.19) (3.16) (7.92) (14.29) (103.69)

DAX 1994-1998 -0.142 8.62 ·10−5 0.032 0.081 0.891

(-1.52) (2.67) (3.75) (5.00) ( 43.24)

STOXX 1994-1998 -0.127 1.20 ·10−4 1.26 ·10−2 0.064 0.918

(-1.68) (2.89) (3.16) (5.74) ( 65.52)

NIKKEI 1973-1990 0.028 3.79 ·10−6 3.21 ·10−2 0.226 0.748

(1.80) (3.48) (10.57) (43.66) ( 90.74)

Table A.1: Estimation of the FTS-GARCH model defined in Eq. (16), (17) for the S&P 500 index from December

1968 to February 2000 (7871 daily observations) and from January 1977 to August 1987 (2691 daily observations),

the NASDAQ Composite index from March 1988 to March 2000 (3036 daily observations), the DAX index from

January 1994 to June 1998 (1111 daily observations), the STOXX 50 index from from January 1994 to June

1998 (1178 daily observations), and the NIKKEI 225 index from January 1973 to January 1990 (4203 daily

observations). t-statistics are in parenthesis.
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Figure A.1: Simulated trajectories for the logarithms of the money channeled to the financial sector MF

(dark line) and of the financial price P (light line). In such a representation, a constant growth rate

corresponding to a standard exponential growth is qualified by a straight line (dotted line). The upward

curvatures, i.e., convex profiles of lnMF and lnP characterize a faster-than-exponential acceleration,

associated with the positive feedbacks of price on money and of money on price. See text.
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Figure A.2: Empirical trajectories for the logarithms of the SP500 index from January 1965 to February

2000 (top left panel), the SP500 index from January 1977 to September 1987 (top right panel), the

NASDAQ index from March 1988 to March 2000 (middle left panel), the DAX index from January 1994

to June 1998 (middle right panel), the STOXX 50 index from December 1986 to August 1991 (bottom left

panel) and the NIKKEI 225 index from January 1973 to December 1989 (bottom right panel). In such

a representation, a constant growth rate corresponding to a standard exponential growth is qualified by

a straight line (dotted line). The upward curvatures characterize a faster-than-exponential acceleration,

associated with the positive feedbacks of price on money and of money on price. See text.
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Figure A.3: Top panel: Simulated trajectories with deterministic regime switching for money channeled

to the financial sector MF , financial prices P , nominal GDP Y , bankruptcy rate B and money channeled

to the real sector MR (variables are in normalized values). Bottom panel: Simulated path of the volatility

of financial price σt,P .
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Figure A.4: Top panel: Simulated trajectories with stochastic regime switching for money channeled

to the financial sector MF , financial prices P , nominal GDP Y , bankruptcy rate B and money channeled

to the real sector MR (variables are in normalized values). Bottom panel: Dynamics of the latent state

variable st (+1 for st = H when ξt ≥ 0 and −1 for st = L when ξt < 0, see Eq.(6)) and its triggering

variable xt represented by the financial asset misspricing.
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Figure A.5: Simulated trajectories for a temporary intervention injecting an amount of money equal to

10% of the total money supply. Top left panel: no intervention benchmark. Top right panel: intervention

on the financial sector MF , P . Bottom right panel: intervention on the real sector MR. Bottom left panel:

comparison of the impact of the two types of intervention on the dynamics of the nominal GDP Y . Same

seed for the random number generator is used in the different scenarios.
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Figure A.6: Simulated trajectories for a permanent intervention injecting in each period the amount of

money necessary to keep the total money supply approximately constant. Top left panel: no intervention

benchmark. Top right panel: intervention on the financial sector MF , P . Bottom right panel: intervention

on the real sector MR. Bottom left panel: comparison of the impact of the two types of intervention

on the dynamics of the nominal GDP Y . Same seed for the random number generator is used in the

different scenarios.
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Figure A.7: Top panels: Log price of S&P 500 October 1987 to September 2011 (8721 daily observations)

and t-statistics of the FTS parameter γ computed on a moving window of 8000 days. Bottom panels:

Close up from September 1995 to August 2003.

32



NASDAQ Composite

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
−3

−2

−1

0

1

2

3

4

 

 

t−stat
Log Price (rescaled)

NASDAQ Composite (closer look)

1997 1998 1999 2000 2001
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

 

t−stat
Log Price (rescaled)

Figure A.8: Top panels: Log price of NASDAQ Composite from January 1992 to May 2000 (3024 daily

observations) and t-statistics of the FTS parameter γ computed on a moving window of 3000 days.

Bottom panels: Close up from October 1997 to May 2000.
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Figure A.9: Top panels: Log price of DAX index from September 1995 to March 2000 (1662 daily obser-

vations) and t-statistics of the FTS parameter γ computed on a moving window of 1500 days (the zero

values in the first part of the series correspond to the build up period of the moving window). Bottom

panels: Close up from November 1996 to November 1998.
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Figure A.10: Top panels: Log price of STOXX index from September 1994 to May 2000 (2069 daily

observations) and t-statistics of the FTS parameter γ computed on a moving window of 1500 days.

Bottom panels: Close up from March 1996 to December 1998.
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Figure A.11: Top panels: Log price of NIKKEI 225 index from February 1984 to April 1992 (2960 daily

observations) and t-statistics of the FTS parameter γ computed on a moving window of 4000 days (the

extreme return on 19 October 1987 has been excluded form the sample). Bottom panels: Close up from

December 1986 to March 1990.
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