
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

GlobalFS: A Strongly Consistent Multi-Site File System
Leandro Pacheco1, Raluca Halalai2, Valerio Schiavoni2, Fernando Pedone1, Etienne Rivière2,
Pascal Felber2

1 Faculty of Informatics, Università della Svizzera italiana, Switzerland
2 Institut d’informatique, Université de Neuchâtel, Switzerland

Abstract

This paper introduces GlobalFS, a POSIX-compliant geographically distributed file
system. GlobalFS builds on two fundamental building blocks, an atomic multicast
group communication abstraction and multiple instances of a single-site data store.
We define four execution modes and show how all file system operations can be imple-
mented with these modes while ensuring strong consistency and tolerating failures.
We describe the GlobalFS prototype in detail and report on an extensive performance
assessment. We have deployed GlobalFS across all EC2 regions and show that the sys-
tem scales geographically, providing performance comparable to other state-of-the-
art distributed file systems for local commands and allowing for strongly consistent
operations over the whole system. The code of GlobalFS is available as open source.

Report Info

Published
April 2016

Number
USI-INF-TR-2016/01

Institution
Faculty of Informatics
Università della Svizzera itali-
ana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Cloud infrastructures, composed of multiple interconnected datacenters, have become an essential part of
modern computing systems. They provide an efficient and cost-effective solution to hosting web-accessible
services, storing and processing data, or performing compute-intensive tasks. Large companies like Amazon
or Google do not only use such architectures for their own needs, but they also rent them to external clients
in a variety of flavors, e.g., infrastructure (IaaS), platform (PaaS), software (SaaS), or data (DaaS) as a service.
Such global infrastructures rely on geographically distributed datacenters for fault-tolerance, scalability,
and performance reasons.

We focus in this work on the design of a geographically distributed file system, accessible via a POSIX-
compliant API. Most previous designs for geographically distributed file systems [27, 37]have provided weak
consistency guarantees (e.g., eventual consistency [16]) to work around the limitations formalized by the
CAP theorem [23], which states that distributed applications can fully support at most two of the following
three properties simultaneously: consistency, availability, and tolerance to partitions. Our goal is to ensure
strongly consistent file system operations despite node failures, at the price of possibly reduced availability
in the event of a network partition. Weak consistency is suitable for domain-specific applications where
programmers can anticipate and provide resolution methods for conflicts, or work with last-writer-wins
resolution methods. Our rationale is that for general-purpose services such as a file system, strong consist-
ency is more appropriate as it is both more intuitive for the users and does not require human intervention
in case of conflicts.

Strong consistency requires ordering commands across replicas, which needs coordination among nodes
at geographically distributed sites (i.e., regions). Designing strongly consistent distributed systems that
provide good performance requires careful tradeoffs. The original approach we explore in this work is to
trade the performance of global operations, spanning multiple regions, for the scalability of intra-region

1

http://www.inf.usi.ch/techreports/

operations. We capture this compromise with the notion of geographical scalability.
Geographical scalability is motivated by geo-distributed applications that wish to exploit locality without

compromising consistency or reducing the scope of operations to a single region. This trend is becoming
increasingly more important with the wide range of applications that are deployed over multiple datacen-
ters spanning several regions, e.g., on Amazon EC2. Yet, achieving geographical scalability is notoriously
difficult. For example, among the few existing file systems with support for geographical distribution, Calv-
inFS [60] totally orders requests. As a consequence, performance decreases with the number of regions in
the system, even for operations that access objects in a single region.

This paper introduces GlobalFS, a file system that achieves geographical scalability by exploiting two
abstractions. First, it relies on data stores located in geographically distributed datacenters. Files are rep-
licated and stored as immutable blocks in the data stores, which are organized as distributed hash tables
(DHTs). Second, GlobalFS uses an atomic multicast abstraction to maintain mutable file metadata and or-
chestrate multi-site operations. Atomic multicast provides strong order guarantees by partially ordering
operations.

GlobalFS notably differs from other distributed file systems by defining a flexible partition model in
which files and folders can be placed according to access patterns (e.g., in the same region as their most
frequent users), as well as four execution modes corresponding to the operations that can be performed
in the file system: (1) single-partition operations, (2) multi-partition uncoordinated operations, (3) multi-
partition coordinated operations, and (4) read-only operations. While single-partition and read-only oper-
ations can be implemented efficiently by accessing a single region, the other two operations require interac-
tions across multiple regions. By leveraging atomic multicast and distinguishing between these four modes
of execution, GlobalFS can provide low latency for single-region commands while allowing for consistent
operations across regions. GlobalFS can therefore exploit geographical locality in new ways to combine
performance and consistency, and hence propose original contributions in the well-studied design space
of distributed file systems.

We have implemented a complete prototype of GlobalFS and deployed it on Amazon’s EC2 platform with
nodes spread all over the world, across all nine available regions. We have conducted an in-depth study
of its performance. Results show that GlobalFS outperforms other geographically distributed file systems
that offer comparable guarantees and delivers good performance for single-site commands. The code of
GlobalFS is freely available as open source.1

The rest of this paper is organized as follows. Sections 2 and 3 introduce GlobalFS’s system model and
architecture, respectively. Section 4 presents the protocol design. Section 5 describes the implementation
of our prototype. Section 6 discusses results of experimental evaluation. Section 7 reviews related work and
Section 8 concludes.

2 System model and definitions

We assume a distributed system composed of interconnected processes that communicate by message
passing. There is an unbounded set of client processes and a bounded set of server processes. Processes
may fail by crashing, but do not experience arbitrary behavior (i.e., no Byzantine failures).

Client and server processes are grouped within datacenters that are geographically distributed over dif-
ferent regions. Processes in the same region experience low-latency communication, while messages ex-
changed between processes located in different regions are subject to larger latencies. Links are quasi-
reliable: if both the sender and the receiver are non-faulty, then every message sent is eventually received.

The system is partially synchronous [17]: it is initially asynchronous and eventually becomes synchron-
ous. The time when the system becomes synchronous is called the global stabilization time (GST) and is
unknown to the processes. Before the GST, there are no bounds on the time it takes for messages to be
transmitted and actions to be executed. After the GST, such bounds exist but are unknown. In practice,
“forever” means long enough for the atomic multicast protocol to make progress (i.e., deliver messages).

GlobalFS ensures sequential consistency for update operations and causal consistency for reads. A sys-
tem is sequentially consistent if there is a way to reorder the client commands in a sequence that (i) respects
the semantics of the commands as defined in their sequential specification, and (ii) respects the ordering
of commands as defined by each client [5]. A system is causally consistent if the result of read operations
respect the causal ordering of events as defined by the “happens-before” relation [29].

1https://github.com/pacheco/GlobalFS

2

https://github.com/pacheco/GlobalFS

Atomic multicast

Client interface (FUSE)
Applications

Metadata management
Data store

Network

Figure 1: Overall architecture of GlobalFS.

3 System architecture

This section presents the overall architecture of GlobalFS and how the file system can be partitioned and
replicated across datacenters.

3.1 Components

The architecture of GlobalFS consists of four components: the client interface, the data store, metadata
management, and atomic multicast (see Figure 1).

The client interface provides a file system API supporting a subset of POSIX 1-2001 [1]. GlobalFS imple-
ments file system operations sufficient to manipulate files and directories. Some file system calls change
the structure of the file system tree (i.e., the files and directories within each directory). Each file descriptor
seen by a client when opening a file is mapped to a local file descriptor at each GlobalFS server. We support
file-specific operations: mknod, unlink, open, read, write, truncate, symlink, readlink; directory-
specific operations: mkdir, rmdir, opendir, readdir; and general purpose operations: stat, chmod,
chown, rename, and utime. We support symbolic links, but not hard links.

Like most contemporary distributed file systems (e.g., [22, 53, 10, 51]), GlobalFS decouples metadata
from data storage. Metadata in GlobalFS is handled by the metadata management layer. Each file has an as-
sociated inode block (iblock) containing the metadata information about the file (e.g., its size, owner, and
access rights) and pointers for its data blocks. The actual content of a file is stored in data blocks (dblocks).
The two types of blocks are handled differently and stored separately: dblocks are immutable and stored
by the clients in the storage servers; iblocks are mutable and maintained by the metadata servers.

GlobalFS distinguishes updates (i.e. operations that modify the state of a file or directory) from read-
only operations. Updates are sequentially consistent while reads are causally consistent (see Section 2).
Every update operation is ordered by atomic multicast [34]. Atomic multicast is a one-to-many communic-
ation abstraction that implements the notion of groups. Servers subscribe to one or more groups and every
message multicast to a group g will be delivered by processes that subscribe to g . Let relation < be defined
such that m <m ′ iff there is a process that delivers message m before message m ′. Atomic multicast en-
sures that (i) if a process delivers m , then all non-faulty processes that subscribe to the same group deliver
m (agreement); and (ii) relation < is acyclic (order). The (partial) order property implies that if processes p
and q deliver messages m and m ′, then they deliver them in the same order.

It is important to understand the difference between atomic broadcast, as implemented by Paxos [30]
and its variants (e.g., [35, 31, 40]), and atomic multicast. With atomic broadcast, for every pair of delivered
messages m and m ′, either m <m ′ or m ′ <m . With atomic multicast, it is possible that neither m <m ′

nor m ′ <m . This is the case, for example, if m and m ′ are multicast to groups g and g ′, respectively, and
no process subscribes to both groups. Partially ordering messages, as defined by atomic multicast, is a
fundamental requirement for achieving scalable distributed systems.

The data store provides a linearizable key-value store with primitives to read (get) and create (put)
data items. It is implemented as a collection of distributed hash tables (DHTs), with one instance of the
data store per datacenter. Maintenance of the data in the DHT is simple and efficient given that data blocks
are immutable. DHT-based data stores scale remarkably well horizontally [28, 16, 46, 14].

3.2 Partitioning and replication

Data partitioning and replication have an important impact on the performance and reliability of a data
management system. Horizontal partitioning (sharding) is commonly used to scale distributed file sys-
tems. For example, hashing the pathname of each file is a straightforward way to distribute files across the
system [60]. Hashing provides good load distribution of files but its lack of support for locality might place

3

Partition Replication Performance Fault tolerance

Global across regions best for reads disaster
Local within region best for reads & writes datacenter crash

Table 1: Partitions in GlobalFS.

files far away from their most frequent or likely users. Although GlobalFS supports any partitioning scheme,
including hashing, we explore a different approach to partitioning and replication, which takes locality into
consideration, as we now explain.

The file system is partitioned and replicated according to the expected client access patterns and the
degree of fault tolerance desired. Files that are mostly read and rarely modified (e.g., system and application
programs) are placed in a single “global” partition, replicated across regions; files that experience locality
of access (e.g., temporary files related to a client) are placed in “local” partitions, replicated in datacenters
inside a single region, close to the clients most likely to access them. In this setup, a file in the global partition
can be read from any region, resulting in high throughput and low latency for read operations. Updating a
file in the global partition, however, involves all regions. Local partitions, on the other hand, can provide
high throughput and low latency for both reads and updates, as long as the client is close to its location. Both
local and global partitions can tolerate the failure of an entire datacenter. Moreover, the global partition can
tolerate the failure of all datacenters in a region (i.e., a disaster). Table 1 summarizes the two partition types
in GlobalFS.

To allow for flexible system deployment, GlobalFS decouples data from metadata. Although data and
metadata are likely to be stored in the same servers, the system can cope with the case in which the metadata
of a file is stored in a region and the file data is stored in a different region. This is useful, for example, to
migrate large files from one region to another. The metadata, which is typically small, can be quickly moved
from one region to another—hence completing the operation—while the data follows asynchronously.

3.3 Use of atomic multicast

In order to allow operations to be consistently propagated to the replicas, one multicast group is associated
with each partition. Servers subscribe to two multicast groups: one, ga l l , associated with all the servers
in the system, and another associated with servers in the datacenters in the same region.2 Commands
that update files in the global partition or update files in multiple local partitions are multicast to ga l l ;
commands that update files in a local partition are multicast to the group associated with the partition. The
use of atomic multicast allows for independent local partitions while still providing consistent operations
across them. Section 4 describes in detail how this is achieved by GlobalFS.

3.4 Example deployment

Consider a deployment involving three regions, R1, R2, and R3, each with three datacenters. The file sys-
tem is partitioned in four partitions, P0, ..., P3 (see Figure 2), such that P0 is replicated in datacenters in all
regions and partition Pi , 1≤ i ≤ 3, is replicated in datacenters in region Ri . In this scenario, we have clients
and servers (metadata and data store) distributed across the regions, that is, in addition to the metadata
associated with the region’s partition, each datacenter also hosts an instance of the data store. More pre-
cisely, the metadata for the directory /1 and all its contents (recursively) are stored only in P1. In the same
manner, /2 and /3 are respectively mapped to P2 and P3. Files not contained in any of these directories
(e.g., /, /bin, /etc) are in partition P0.

4 Protocol design

GlobalFS differentiates four classes of operations and defines for each one a different execution mode.
GlobalFS’s execution modes provide the basis for the implementation of each file system operation. We
start by going through the details of each execution mode. We then describe the execution open, read and
write operations, from start to finish. Finally, we discuss how failures are handled in GlobalFS.

2Note that the setup of multicast groups is flexible and other configurations could be used to adapt for instance to the network
topology, the workload, or specific performance/consistency requirements.

4

… … …… …
P0 P3P2P1

…

/

1 2 3bin etc …

Figure 2: Illustrative deployment of GlobalFS with 4 partitions. Partition P0 is replicated in all regions and each other
partition is replicated in one different region.

4.1 Execution modes

Each operation in GlobalFS follows one of the following execution modes. Except for read and write
operations, all file system operations access only the metadata servers.

Single-partition operations. A single-partition operation modifies metadata stored in a single partition. As
a consequence, operations in this class are multicast to the group associated with the concerned partition
and, when delivered, executed locally by the replicas. The execution of a single-partition operation follows
state-machine replication [50]: each replica delivers a command and executes it deterministically. One of
the replicas replies to the client.

The following operations are single-partition in GlobalFS, where the terms child and parent are used to
refer to a node and the directory that contains it.

• chmod, chown, truncate, open, and write;

• mknod, unlink, symlink, and mkdir when the parent and child are in the same partition; and

• rename, when the origin, origin’s parent, destination, and destination’s parent are in the same parti-
tion.

Note that while a single-partition operation in a local partition involves only servers in one region, a
single-partition operation in the global partition (multicast to group ga l l) involves servers in all regions of
the system.

Uncoordinated multi-partition operations. An uncoordinated multi-partition operation accesses metadata
in more than one partition, but the operation’s execution at each partition can complete without any in-
put from the other partitions involved. The partial ordering of atomic multicast is sufficient to guarantee
consistency: partitions will independently reach the same decision in regards to success or failure. This is
similar to the notions of independent transactions in Granola [13] or one-shot transactions in H-Store [26].

To execute an operation that concerns multiple partitions P1, P2, ..., Pn , the operation is atomically mul-
ticast to all replicas of all involved partitions. Upon delivery, each replica Pi executes the operation and
one of the replicas replies to the client. To reach replicas in multiple partitions, the operation is multic-
ast to group ga l l ; if a replica delivers an operation it is not concerned about, the replica just discards the
operation.

The following file system commands are implemented as uncoordinated multi-partition operations:

• mknod, unlink, symlink, mkdir, rmdir when the parent and child are in different partitions.

Coordinated multi-partition operations. Some operations require partitions to exchange information. In
GlobalFS, this may happen in the case of a rename (i.e., moving the location of a file or directory). In this
case, file metadata has to be moved from the origin’s partition to the destination’s partition. As a result, a
rename may involve up to four partitions, given by the placement of the origin, origin’s parent, destination,
and destination’s parent. Consequently, a rename operation might fail in one of the partitions (e.g., origin
does not exist) but not in the other.

To execute a coordinated multi-partition operation, the client multicasts the operation to all concerned
partitions (i.e., multicast group ga l l). Upon delivery of the operation, the involved partitions exchange
information about the command and whether it can or cannot be locally executed. In the case of a rename,
the file’s attributes and list of block identifiers need to be sent to the destination partition. Similarly to a

5

Operation Partitions Multicast Performance

Read-only one not multicast 1s t (best)
Single-partition one ga l l or g i 2nd

Uncoord. multi-partition two or more ga l l 3r d

Coord. multi-partition two or more ga l l 4t h (worst)

Table 2: Operations in GlobalFS.

two-phase commit protocol, the command is only executed if all involved partitions agree that it can be
executed.

Read-only operations. Read-only operations are executed by a single metadata replica and data store
server.3 For read-only operations, GlobalFS provides causal consistency. This is not obvious to ensure since
a client may submit a write operation against a server and later issue a read operation against a different
server or even read from two separate servers. When the second server is contacted, it may not have applied
required updates yet. GlobalFS provides causal consistency for read operations by carefully synchronizing
clients and replicas, as we explain in the following.

We use an approach inspired by vector clocks [20, 45] where clients and replicas keep a vector of coun-
ters, with one counter per system partition. In the example described in Section 3.4, clients and replicas
keep a vector with four entries, associated with partitions P0, ..., P4. Every request sent by a client contains
vc , the client’s current vector, and each reply from a replica includes the replica’s vector, vr . A read is ex-
ecuted by a replica only when v [i]r ≥ v [i]c , i being the object’s partition. The idea is that the replica knows
whether it is running late, in which case it must wait to catch up before executing the request.

When a replica receives an update operation from a client, the client’s vector vc is atomically multicast
together with the operation. Upon delivery of the command by a replica of Pi , entry v [i]r is incremented.
Every other entry j in the replica’s vector is updated according to the delivered vc , whenever v [j]c > v [j]r .
Clients update their vector on every reply, updating v [i]c if v [i]r > v [i]c , for each entry i .

The following file system commands are implemented as read-only operations: read,getdir,readlink,
open (read-only), and stat.

Table 2 summarizes GlobalFS operations. Single-partition and read-only operations access a single par-
tition. While a single-partition operation is multicast to the group associated with the partition, a read-only
operation is not multicast but is executed by a single metadata replica (and a data store server). For ex-
ample, according to the illustrative deployment described in Section 3.4, a write operation for partition P0

is multicast to ga l l and a write operation for any of the other partitions Pi is multicast to g i . Uncoordin-
ated multi-partition and coordinated multi-partition operations access multiple partitions. Such opera-
tions are multicast to group ga l l . Since read-only operations only involve a single metadata server and are
not multicast, we expect such operations to outperform any other operations in GlobalFS. Single-partition
operations involve all replicas within a single partition, and therefore should perform better than the multi-
partition operations. Finally, because uncoordinated multi-partition operations do not require servers in
different partitions to interact during the execution of a command, they are expected to perform better than
coordinated multi-partition operations.

4.2 The life of some file system operations

To open a file, the client uses the partitioning function to discover the partition replicating the provided
path. With the partition, the client issues an open RPC to the closest replica. The response for this RPC is
a file handle that the client uses to issue subsequent read and write operations. Upon receiving an open
RPC from the client, a replica checks whether the file is being opened for reading or writing. If the file is
open for reading, the replica creates a local file handle, valid only at this replica, and returns it to the client.
If the file is open for writing, the file handle needs to be opened in all replicas as writes are replicated. The
open command is multicast to the associated group (given by the partitioning function) and executed by
all responsible replicas. Once a replica has finally delivered and executed the command, it directly replies
to the client.

3GlobalFS does not implement atime (i.e., time of last access), as recording the time of the last access would essentially turn every
read into a write operation to update the file’s access time.

6

For a read operation, the client needs to execute two steps. First, it issues a read RPC to the replica
holding the file handle. The replica, upon receiving the read, finds the requested file’s metadata and looks
for the blocks that match the offset and number of bytes requested. The reply from the RPC is a list of block
identifiers and pointers. With the block identifiers, the client contacts the closest data store replicating the
file to get the actual data for the blocks. Multiple blocks can be requested in parallel from different data store
nodes. After that, the client can build the sequence of bytes that need to be returned by the read operation.

For a write operation, the client first creates one or more data blocks from the bytes that need to be
written to the file. The client then contacts all the data stores that need to replicate the file (given the par-
titioning function), and inserts the blocks there, with unique identifiers generated at random. Insertion of
multiple blocks can be done in parallel. If all inserts are successful, the client uses the partitioning function
to get the partition replicating the file, chooses the closest replica and issues a write RPC with the block
identifiers as parameters. The replica, upon receiving the write RPC, multicasts the command to the re-
sponsible group. Upon delivery of the command, a replica finds the medatada for this file and inserts the
new blocks. The replica that received the initial RPC from the client replies. On success, the write returns
the number of bytes written.

4.3 Failure handling

Replicas use state machine replication to handle metadata within partitions. A replica only executes a com-
mand that has been successfully delivered by multicast. Thus, if a replica executes a command, other rep-
licas in the same group will also execute the command. GlobalFS uses Multi-Ring Paxos as its atomic mul-
ticast (described in more detail in the next section). With Multi-Ring Paxos, as long as one replica and a
quorum of acceptors are available in each of the groups, the whole file system is available for writing and
reading.

The recovery of a metadata replica is handled by installing a replica checkpoint and replaying missing
commands [8]. Coordinated multi-partition commands require one extra step. For coordinated multi-
partition commands, replicas in the involved partitions need to exchange information before deciding
whether the command can execute or not. A recovering replica, upon replaying a coordinated multi-partition
command, requests this information from replicas in the other partitions. To allow for this, whenever a rep-
lica sends information out regarding a coordinated command, it also stores this information locally.

Each key-value pair in the data store is replicated in f +1 storage nodes. Hence, up to f storage nodes can
fail concurrently without affecting data block availability. Datacenter failures and disasters can be handled
by carefully replicating blocks in different datacenters or different regions.

Client failures during a write or a file delete operation can leave “dangling” dblocks inside the data
store. dblocks without pointers in any iblock are unreachable and can be removed from the data store
(the implementation of a garbage collector is part of our future work).

5 Implementation

In this section, we discuss the implementation of GlobalFS main components, as depicted in Figure 3.

5.1 Client

Files are accessed through a file system in user space (FUSE) implementation [21]. FUSE is a loadable ker-
nel module that provides a file system API to user space programs, letting non-privileged users create and
mount a file system without writing kernel code. According to [59], FUSE is a viable option in terms of
performance for implementing distributed file systems. Clients know the partitioning function used by the
system (currently hardcoded in the client) and use Zookeeper [24] to find the set of available replicas. When
using FUSE, every system call directed at the file system is translated to one or more callbacks to the client
implementation. In GlobalFS, most FUSE callbacks have an equivalent RPC (remote procedure call) avail-
able in the metadata servers. By using the partitioning function, a client can discover to which metadata
replica or data store it needs to direct a given operation. Whenever a client has the option of directing a
command to more than one destination, it chooses the closest one (with the lowest latency).

7

Datacenter
Data (replicated)

Storage node

DHT

Metadata (replicated)

Global ring

Multi-Ring Paxos node

Local ringFUSE API

Data
Metadata

Clients

Figure 3: Components and interactions in GlobalFS.

5.2 Atomic multicast

We use URingPaxos,4 a unicast implementation of Multi-Ring Paxos [34], which implements atomic mul-
ticast by composing multiple instances of Paxos to provide scalable performance. Each multicast group
is mapped to one Paxos instance. A message is multicast to one group only. Processes that subscribe to
multiple groups use a deterministic merge procedure to define the delivery order of the messages such that
processes deliver common messages in the same relative order.

For each Paxos instance, Multi-Ring Paxos disposes proposers, learners, and a majority-quorum of ac-
ceptors in a logical directed ring in order to achieve high throughput. Processes in the ring can assume
multiple roles and there is no restriction on the relative position of these processes in the ring, regardless
of their roles. Each ring has a Paxos coordinator, typically the first acceptor in the ring.

In our setup we keep a global ring that includes all metadata replicas in the system, as illustrated in
Figure 3. This ring implements the ga l l group discussed in Section 4. Each other group is implemented by
a ring that includes replicas in the same region.

5.3 Metadata replicas

Metadata in GlobalFS is kept by replicated servers, using state machine replication [50]. Replicas can be part
of multiple multicast groups; in our prototype, each replica is a Multi-Ring Paxos learner. When a replica
delivers a command, the replica checks whether it should execute the command by using the partitioning
function. The file system metadata is kept in-memory by the replica and the sequence of commands is
stored by Multi-Ring Paxos acceptors. Replicas can be configured to keep their state in memory or on disk,
with asynchronous or synchronous disk writes.

The file system is represented as a tree of nodes. There are three node types: directory, file, and symbolic
link. A directory node stores the directory properties (e.g., owner, permissions, times) and a hash table of
its children nodes, stored by name. A file node keeps the file properties and a list of blocks representing its
contents. Symbolic link nodes only need to store the node properties and the target path of the link.

The metadata replicas are implemented in Java and expose a remote interface to the clients via Thrift [4].

5.4 Data store

GlobalFS is designed to support any back-end data store that exposes a typical key-value store API and
provides linearizability. Our data store is implemented in Go and uses LevelDB [32] as its storage backend.
Depending on the application requirements and fault model, data may be stored persistently on disk or
maintained in memory.

The data store is organized as a ring-based DHT and uses consistent hashing for data placement. Each
server maintains a full membership of other servers on the ring, allowing one-hop lookups. This design,
similar to Cassandra [28] or Dynamo [16], provides good horizontal scalability and stable performance.

Each block is assigned to the first server whose logical identifier follows the block identifier on the ring.
A block is replicated as r copies, by copying it onto the r −1 successors (i.e., servers that immediately follow
this first server on the ring). This ensures data availability with up to r − 1 simultaneous failures. Servers
periodically check for the availability of copies of their blocks onto their successors and create additional

4https://github.com/sambenz/URingPaxos

8

https://github.com/sambenz/URingPaxos

copies when necessary. Similarly, servers periodically check for their predecessor availability and take over
the responsibility for their ranges upon failure, also creating additional copies. We note that the blocks
stored in the DHT are only written once: there is no need to enforce write consistency between replicas.

Clients contact the DHT via any of its proxy servers. The proxy will create the r copies of the block, using
the slower link from the client to send the block only once.

GlobalFS throughput

 0

 10000

 20000

 30000

 40000

 50000

 60000

glob. read 1KB

read 1KB

create
create 1KB

write 1KB

HDFS read at 126000

O
pe

ra
tio

ns
/s

ec

HDFS write
CalvinFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

glob. create

glob. create 1KB

glob. write 1KB

GlobalFS latency distribution

0

20

40

60

80

100

local create
local create 1KB

local write 1KB
global read 1KB

local read 1KB

0

20

40

60

80

100

 1 10 100 1000 10000

C
D

F
 (

%
)

Operation time (milliseconds, log-scale)

global create
global create 1KB

global write 1KB

Figure 4: Maximum throughput and latency distribution for different GlobalFS operations with the baseline deploy-
ment of 3 partitions. Latencies measured at 50% of maximum throughput.

6 Evaluation

We evaluate GlobalFS using Amazon’s EC2 platform. We deploy VMs in all nine EC2 regions available at
the time of our experiments. For each region, we distribute servers and clients in three separate availability
zones to tolerate datacenter failures. More specifically, inside a single region, we place one server (metadata
colocated with storage) and one client machine in each availability zone (six VMs per region). In regions
where only two availability zones are present (e.g., eu-central-1) we compromise by placing two servers
and clients in the same zone. We usedr3.large (memory optimized) andc3.large (compute optimized)
instance types, with 2 virtual CPUs, 32 GB SSD storage, and respectively 15.25 and 3.75 GiB memory [3]. We
use r3.large instances for servers and c3.large instances for clients.

We configure the atomic multicast layer based on Multi-Ring Paxos to use in-memory storage. The data
store nodes use LevelDB with asynchronous writes to persistent storage.

Our evaluation starts by assessing that the data store implementation in Go using LevelDB [32] can sus-
tain enough throughput not to constitute a bottleneck in our GlobalFS microbenchmarks. We deploy five
storage nodes inside a single region with a replication factor of 2 (i.e., each block has 2 copies). For blocks
sizes of 1 KB, the data store achieves more than 8,000 put operations per second, i.e., around 0.06 Gb/s of
aggregate traffic. With larger block sizes (32 KB), the same set-up could sustain around 6,500getoperations
per second, or around 1.58 Gb/s. For the rest of our experiments, we use blocks of 1 KB.

6.1 Microbenchmarks

We use a custom microbenchmark to evaluate the performance and scalability of GlobalFS for the following
types of operations:
. read 1 KB: each client reads sequentially from a small file (10 KB), in 1 KB chunks. Upon reaching the end
of the file, a client wraps and continues reading from the beginning. We disable caching on the client side
so that all reads go through the complete protocol.
.write 1 KB: each client writes sequentially to a file in 1 KB chunks.
. create: each client repeatedly creates empty files. This operation accesses only the metadata servers.
. create 1 KB: each client repeatedly creates a file and writes 1 KB to it. Each operation requires 3 sequential
metadata operations: mknod, open, and write.

Each operation type is further divided into two categories: local operations target files located in the
client’s local partition and global operations target files located in the global partition.

9

GlobalFS geographical scalability

 0.2
 0.4
 0.6
 0.8

 1

G
e

o
g

ra
p

h
ic

a
l

s
c
a

la
b

ili
ty

1 Region 3 Regions 6 Regions 9 Regions

16081 ops

16094 ops

6882 ops

2421 ops

3072 ops

 1

 10

 100

read 1KB

glob. read 1KB

create

create 1KB

write 1KB

L
a

te
n

c
y
 (

m
s
)

Figure 5: Geographical scalability and 95th percentile latencies for different GlobalFS operations, with increasing sys-
tem size. Latencies measured at around 50% of maximum throughput.

6.1.1 Performance with 3 regions

For these experiments, we use 3 different geographically distributed regions: us-west-2, us-east-1, and
eu-west-1. We deploy 1 local partition in each region. Each partition features 3 servers, each in a different
datacenter (availability zone). Metadata and storage are co-located: each server holds a metadata replica
and a storage node. Each datacenter also holds one client machine, thus there are 3 clients per region. Each
client machine has one GlobalFS FUSE mount point. We then run multiple instances of our benchmark
application on top of each client machine.

For comparison, we also show values reported by HDFS in [53]and CalvinFS in [60]. HDFS uses a central-
ized non-replicated metadata server. The values reported for HDFS consider only metadata performance,
and thus represent an upper bound for the actual performance of HDFS. For CalvinFS, we report the ap-
proximate values with 9 servers. As the exact values for CalvinFS with 9 servers are not provided in [60], we
approximate them by interpolating the values for 6 and 18 servers (we contacted the authors but could not
obtain the source code). Due to the linear behavior exhibited by CalvinFS, our approximation should be
fairly accurate.

Throughput. Figure 4 (left) shows the maximum throughput achieved for each operation. For read oper-
ations, GlobalFS achieved around 60% higher throughput than CalvinFS, for both local and global opera-
tions. HDFS achieves higher performance for reads, but it takes only metadata performance into account.
Reads in GlobalFS scale linearly with the number of replicas (a single replica needs to be contacted).

For writes, GlobalFS was able to surpass the throughput of HDFS for local operations, even though HDFS
considers only metadata. GlobalFS was able to achieve 6 times the throughput of CalvinFS for local writes.
For global writes, CalvinFS’s throughput was 1.7 times higher. In our setup for GlobalFS, the global partition
is replicated by all servers in the system (thus it cannot scale).

For creating a file with content, by not complying to POSIX, CalvinFS is able to execute the operation
using a single metadata access (by means of a custom transaction). Adhering to POSIX requires a sequence
of three metadata operations: create the file, open, and write. The close is omitted as the write is syn-
chronous. Even though GlobalFS needs the three operations in the same scenario, it can achieve through-
put 14.5 times higher than CalvinFS using the faster local partitions. Considering global creates, CalvinFS
achieves 1.5 times higher throughput. On the other hand, creating an empty file requires a single metadata
operation. In this case, GlobalFS was able to surpass even the performance of HDFS when using the local
partitions (3.5 times the throughput). Values for this operation are not reported in the paper that presents
CalvinFS [60].

These results show the benefit of exploiting data locality. CalvinFS, while scaling throughput with the
number of replicas within a datacenter, does not benefit from local, fast operations. In CalvinFS, all write
operations need to go through the global log, thus introducing an overhead on latency. This problem is
exacerbated in WAN deployments: either the log is disaster tolerant and all operations pay the cost, or the
log is local to a region and clients in other regions need to pay the roundtrip latency. GlobalFS on the other

10

hand, allows for files to be either locally or globally replicated, thus providing the option for users to choose
between availability (disaster tolerance) and performance (throughput and latency). Note that operations
across the whole system are still strongly consistent in GlobalFS. The results also show that GlobalFS can
deliver good performance while still providing a POSIX interface, thus allowing for existing applications to
be used without modification.

Latency. Figure 4 (right) shows the latency distribution for the different types of operations. We measure
latency with the system supporting around 50% of its maximum throughput. The results show that oper-
ations can be divided roughly in 3 groups in regards to latency: reads, local writes, and global writes (we
group creates with writes). Read operations, global and local, observe the lowest latency values, an average
of 3.5 ms. This is due to reads being executed by a single metadata replica and not having to go through
atomic multicast. Clients can also obtain dblocks from the local data store. Local writes, which need
to be multicast to servers in a single region, can achieve the second lowest latency, with averages around
20–40 ms. Finally, global writes observe the highest latency values. In our setup, global writes need to be
multicast to all servers in the system, across all regions. Clients also need to insertdblocks in all data stores.
Even so, latency values for writes and creating empty files on the global partition had an average of around
300 ms.

6.1.2 Geographical scalability

We introduce the notion of geographical scalability to assess the impact of geographical deployments on
performance. Geographical scalability is defined as the ratio between the maximum throughput of local
commands in a region in a system that spans multiple regions and the throughput of the region when de-
ployed alone. A geographical scalability of 1 is ideal. Intuitively, it means that the throughput achieved in a
single region is not affected by the other regions.

We compute geographical scalability as follows. We first measure the throughput achieved with Glob-
alFS in a single EC2 region, eu-west-2. Then, we consider multi-region deployments with 3, 6, and 9
regions:
. 3 regions: us-west-2, us-east-1, eu-west-1.
. 6 regions: + us-west-1, eu-central-1, ap-northeast-1.
. 9 regions: + ap-southeast-1, ap-southeast-2, sa-east-1.

The reported value is the ratio between the multi-region and the single-region configurations.
Figure 5 (left) shows that GlobalFS scales almost perfectly for all local operations. For create opera-

tions, we see a drop in performance as regions are added, down to around 0.8 when all available regions
are used. Maximum absolute throughput is shown above the single-region configuration. Figure 5 (right)
shows the 95th-percentile of latency in each deployment, measured at around 50% of maximum load. Read
commands suffer no impact in latency as they can be executed by a single replica (note that both lines are
superimposed). For local writes and creates, the largest increase in latency happens when the system grows
from 1 to 3 regions. While commands are executed by replicas inside a single region, Multi-Ring Paxos still
needs to synchronize groups. Therefore, latency variations in the global ring can affect the performance of
local commands [34].

6.2 Real-world applications

We now present results of an experimental evaluation conducted with real-world applications. We evalu-
ate the performance of some real-world workloads when executed on global and local partitions of Glob-
alFS. We compare the results against three widely used distributed file systems: NFS (v4.1) [57], GlusterFS
(v3.7) [15] and CephFS (v0.94) [63]. Our objective is to assess that, while providing stronger guarantees,
GlobalFS compares favorably to de-facto industry implementations.

We configure NFS with one single shared directory mounted remotely by the same clients. The NFS
server runs in the us-west-2 region. We disable all caching features on GlobalFS, and the NFS clients
mount the remote directory with lookupcache=none,noac,sync options. Note that NFS lacks native
support for replication,5 while GlobalFS is configured to always guarantee two copies per dblock.

5The replicas mount option of NFS is a client-side failover feature, but the replication of the shared data has to be handled
independently from the NFS protocol.

11

access open read write lstat lseek closefstat GlobalFS GlusterFS CephFS
Command Operations breakdown NFS global local global∗ local local

tar xzvf bc-1.06.tgz ta
r
bc

1.94 s 47.09 × 1.36 × 149.05 × 1.63 × 0.17 ×
configure co

nf
ig
ur
e
bc

5.32 s 44.66 × 2.02 × 45.67 × 0.96 × 0.56 ×
make -j 10 ma

ke
 b
c

5.9 s 29.90 × 2.38 × 49.34 × 1.17 × 0.63 ×
make (same as above) 13.14 s 20.73 × 1.16 × 55.20 × 0.92 × 0.30 ×

gzip -d httpd-2.4.12.tgz gz
ip
 h
tt
pd

3.87 s 117.12 × 2.47 × 284.75 × 0.37 × 0.11 ×
tar xvf httpd-2.4.12.tar ta

r
ht
tp
d

60.01 s 41.46 × 1.08 × 99.17 × 0.12 × 0.14 ×
configure –prefix=/tmp co

nf
ig

ur
e

29.32 s 49.35 × 2.04 × 56.53 × 1.34 × 0.33 ×
make -j 10 ma

ke
 h
tt
pd

714.37 s 2.74 × 0.52 × 139.68 × 0.87 × 0.48 ×
make (same as above) 3432.72 s 1.82 × 0.36 × 83.72 × 0.50 × 0.64 ×

Table 3: Execution times for several real-world benchmarks on GlobalFS with operations executed over global and
local partitions. Execution times are given in seconds for NFS, and as relative times w.r.t. NFS for GlobalFS, GlusterFS
and CephFS. ∗Note that GlusterFS does not support deployments with both global and local partitions; thus, we report
results from two separate deployments.

We use FUSE-based bindings for GlobalFS, GlusterFS, and CephFS. We chose two well-known open-
source projects as workload: the bc numeric processing language (v1.06), and the Apache httpd web-
server (v2.4.12). These two projects differ in size of the compressed archives (278 kB and 6 MB), number
of shipped files (94 and 2,452) and lines of ansi-C code to compile (8,510 and 157,575). They expose dif-
ferent workloads to the underlying file system and are often used as benchmarks [58]. Table 3 embeds the
operations breakdown of the system calls issued by the different commands (decompress, configure, and
compile) used for these experiments. We evaluate GlobalFS either within a global or a local partition, and
compute the average over 3 distinct executions. All file systems are mounted by 9 clients spread equally
across 3 regions, but the workload is executed on a single client. We use equivalent settings for GlusterFS,6

and CephFS. For NFS, all clients mount a shared directory, and a client co-located with the service executes
the commands. For GlusterFS we evaluate two different deployments, local (one region) and global (three
regions). Each deployment consists of a distributed/replicated volume on top of regular storage bricks, one
on each of the availability zones for the given EC2 regions. We deployed CephFS only at a single region
(3 storage daemons, 1 metadata server, and 3 clients) because a deployment across regions would require
forfeiting strong consistency [18]. We set the replication factor of GlusterFS, and CephFS to 3.

Table 3 presents our results. We observe that GlobalFS performs consistently better than GlusterFS when
operating across regions. GlobalFS performs competitively against the other filesystems across the whole
suite of benchmarks. Indeed, GlobalFS is up to 50.9× faster that GlusterFS in compiling Apache httpd
over the global partition. Note that for the same benchmark on a local partition, GlobalFS is actually faster
than NFS. When evaluating GlusterFS and CephFS we use their default, out-of-the-box configuration. Both
are heavily optimized systems and some optimizations are on by default (e.g., clients in CephFS use write-
back caching, which improves write performance by batching small writes). As expected, the performance
penalty for accessing the global partition is higher for write-dominated workloads (extracting an archive,
configuring the software package). For read-dominated or compute-intensive (make) operations, this over-
head decreases because read operations can be completed locally. For comparison purposes, we also tested
HDFS (v2.6) with FUSE bindings on a local partition with some of the benchmarks and observed perform-
ance in the order as GlobalFS and GlusterFS (e.g., 2.12× slower for the first command as compared to 1.36×
and 1.63×, respectively).

Our real-world benchmarks demonstrate that GlobalFS performs on par with widely adopted distrib-
uted file systems, it ensures a stronger consistency model, it supports replication, and allows users to benefit
from locality thanks to its partitioning model.

7 Related work

In this section, we survey the literature on distributed file systems targeting datacenter deployments. All
systems in this category separate the storage of data and metadata. The characteristics of all surveyed sys-
tems are provided in Table 4. We categorize file systems by their geographical scaling potential and identify
three possible scenarios: file systems that work on LAN (WoL) mainly intended for cluster deployments; file
systems that support but perform poorly in wide-area network deployments (WoW); and file systems that

6GlusterFS experiments over the global partition are executed only once due to the required AWS budget.

12

scale in WAN (SoW). GlobalFS is the only system to support data locality while at the same time providing
strong consistency and geographical scalability.

Name Consistency level POSIX interface Code available Client type Scaling potential

GlobalFS S
p p

User SoW
AFS [48] W ,CTO × p

User WoW
CalvinFS [60] S × × User SoW
CephFS [63] S

p p
Kernel,User WoL

CodaFS [49] E
p p

Kernel WoL
Colossus [12] S – × – SoW
BeeGFS [7] S∗

p p
User WoL

GeoFS [33] S∗,CTO
p × User WoW

GFS/GFS2 [43] –
p p

Kernel WoL
GIGA+ [42] E

p × User WoL
GlusterFS [15] S

p p
User WoW

GoogleFS [22] S
p × – SoW

HDFS [53] S, CTO × p
User SoW

LOCUS [62] S
p × Kernel WoL

Lustre [51] CH
p p

Kernel WoL
MooseFS [36] S∗

p p
User WoL

NFS/pNFS [57] CTO
p p

Kernel WoW
ObjectiveFS [38] RaW

p p
User WoW

OCFS [2] CH × p
Kernel WoL

OCFS2 [2] CH
p p

Kernel WoL
PVFS [10] RaW × p

User WoL
OrangeFS [44] RaW × p

User WoL
QuantcastFS [41] E × p

User WoL
SeaweedFS [52] S × p

Kernel WoL
XtreemFS [25] S∗

p p
User WoW

WheelFS [56] S,CTO
p p

User WoW

Table 4: Survey of distributed file systems along several criteria: consistency level (Strong=S, Weak=W , Eventual=E,
Cache=CH , Close-To-Open=CTO, Read-after-Write=RaW), support of the POSIX standard, code availability, client
type (user-space=User, kernel-space=Kernel), scaling potential (Works-on-LAN=WoL, Works-on-WAN=WoW , Scale-
on-WAN=SoW). Some properties are unknown (–) or not by default (∗).

7.1 File systems with strong consistency

CalvinFS [60] is a multi-site distributed file system built on top of Calvin [61], a transactional database.
Metadata is stored in main memory across a shared-nothing cluster of machines. File operations that
modify multiple metadata elements execute as distributed transactions. CalvinFS supports linearizable
writes and reads using a single log service to totally order transactions, a mechanism known to scale through-
put with the number of nodes within three regions [61]. Using more regions penalize all operations, imply-
ing lack of data locality support for CalvinFS. We note that CalvinFS relies on “custom transactions” that
group multiple commands into a single operation to boost performance. For example, creating and writing
a file, which in POSIX would require three sequential calls (i.e., create, open and write), can be executed as
a single transaction in CalvinFS. As a consequence, POSIX compliance cannot benefit from these optimiz-
ations.

CephFS [63] is a file system implementation atop the distributed Ceph block storage [11]. It uses in-
dependent servers to manage metadata and link files and directories to blocks stored in the block storage.
CephFS is able to scale up and down the metadata servers set and to change the file system partition at
runtime for load balancing through its CRUSH [64] extension. Although CephFS supports geographical
distribution, WAN deployment over Amazon’s EC2 is discouraged by the CephFS developers [18].

The Google File System (GoogleFS) [22] stores data on a swarm of slave servers. It maintains metadata
on a logically centralized master, replicated on several servers using state machine replication and total
ordering of commands using Paxos [30]. GoogleFS is a flat storage system. It does not consider the case
of a file system spread over multiple datacenters and the associated partitioning. MooseFS [36] is designed
around a similar architecture and has the same limitations. Colossus [12], GoogleFS successor, provides the
same strong consistency guarantees, but many of its internal details remain undisclosed.

FhGFS/BeeGFS [7] is distributed file system for high-performance computing clusters that targets read-
dominated workloads.

GeoFS [33] is a POSIX-compliant file system for WAN deployments. It exploits user-defined timeouts

13

to invalidate cache entries. Clients pick the desired consistency for files and metadata, as in WheelFS’s
semantic cues [56].

Red Hat’s GFS/GFS2 [43] and GlusterFS [15] support strong consistency by enforcing quorums for writes,
which are fully synchronous. GlusterFS can be deployed across WAN links, but it scales poorly with the
number of geographical locations, as it suffers from high-latency links for all write operations.

HDFS [53] is the distributed file system of the Hadoop framework. It is optimized for read-dominated
workloads. Data is replicated and sharded across multiple data nodes. A name node is in charge of stor-
ing and handling metadata. As for GoogleFS, this node is replicated for availability. The HDFS interface
is not POSIX-compliant and it only implements a subset of the specification via a FUSE interface. Quant-
castFS [41] is a replacement for HDFS that adopts the same internal architecture. Instead of three-way
replication, it exploits Reed-Solomon erasure coding to reduce space requirements while improving fault
tolerance.

SeaweedFS [52] is a distributed file system that follows the design of Haystack [6]. It supports multiple
master nodes and multiple metadata managers to locate files. It is optimized for (small) multimedia files
and does not support the POSIX semantics.

XtreemFS [25] is a POSIX-compliant system that offers per-object strong-consistency guarantees on top
of a set of independent volumes managed by a metadata server (MRC). To best of our understanding, it
does not provide a global integrated file system. Further, it does not offer consistency guarantees for inter-
volume operations.

PVFS [10] and HDFS can be adapted to support linearizability guarantees for metadata [54]by delegating
the storage of the file system’s metadata to Berkeley DB [39], which uses Paxos to totally order updates to its
replicas.

7.2 File systems with weak consistency

There are several distributed file systems for high-performance computing clusters, such as PVFS, PVFS2/OrangeFS [44],
Lustre [51], and FhGFS/BeeGFS [7]. These systems have specific (e.g., MPI-based) interfaces and target
read-dominated workloads. GIGA+ [42] implements eventual consistency and focus on the maintenance
of very large directories. It complements the OrangeFS cluster-based file system.

ObjectiveFS [38] relies on a backing object store (typically Amazon S3) to provide a POSIX-compliant
file system with read-after-write consistency guarantees. If deployed on a WAN, ObjectiveFS suffers from
long round-trip times for operations such as fsync that need to wait until data has been safely committed
to S3.

Close-to-open consistency (CTO) was introduced along with client-side caching mechanisms for the
Andrew file system and implemented in its open-source implementation OpenAFS [48]. This was a re-
sponse to previous distributed file systems designs such as LOCUS [62], which offered strict POSIX se-
mantics but with poor performance. Close-to-open semantics are also used by NFS [57], HDFS [53], and
WheelFS [56].

Oracle OCFS [2] is a distributed file system optimized for the Oracle ecosystem (e.g., database, application-
server). It provides a cache consistency guarantee by exploiting Linux’s O_DIRECT. Its successor OCFS2 [2]
supports the POSIX standard while guaranteeing the same level of cache consistency.

7.3 Peer-to-peer file systems

Peer-to-peer file systems target deployments over a large number of independent servers rather than a col-
lection of datacenters. We do not list these systems in Table 4 as they are less directly linked to our work,
but discuss them below.

A common aspect of peer-to-peer file systems is that they store both metadata and data in the same stor-
age substrate, unlike previously listed approaches and GlobalFS. This storage is typically a DHT. CFS [14]and
PAST [46] are early examples of single-writer peer-to-peer file systems, using the Chord [55] and Pastry [47]
DHTs. Ivy [37] is an evolution of CFS for multiple writers. The set of writers is static and each writer main-
tains its own log of modifications to the file system. A reader must causally parse through all writers’ logs.
Ivy supports eventual but read-your-write consistency. CFS and Ivy use immutable blocks, similarly to
GlobalFS. Pastis [9] similarly extends PAST for multiple writers. It supports read-your-write semantics and
close-to-open consistency. Finally, OceanStore [27] is a DHT-based peer-to-peer file system that offers both
eventual consistency and linearizability. It leverages the eventually serializable data storage [19]: Weak op-
erations may execute at any replica, while strong operations are totally ordered between writers.

14

8 Conclusion

This paper introduces GlobalFS, a geographically distributed file system that accommodates locality of
access, scalable performance, and resiliency to failures without sacrificing strong consistency. GlobalFS
builds on two abstractions: single-site linearizable data stores and an atomic multicast based on Multi-
Ring Paxos. This modular design was crucial to handle the complexity of the development, testing, and
assessment of GlobalFS. Our in-depth evaluation reveals that GlobalFS outperforms other geographically
distributed file systems that offer comparable guarantees and delivers performance comparable to single-
site networked file systems. We credit GlobalFS performance to its flexible partition model and four exe-
cution modes, which allow us to exploit common access patterns and optimize for the most frequent file
system operations. These original features distinguish GlobalFS from other distributed file systems and are
key to providing geographical scalability without compromising consistency.

References

[1] IEEE Std 1003.1-2001 Standard for Information Technology — Portable Operating System Interface (POSIX) Base
Definitions, Issue 6. IEEE, 2001.

[2] Oracle Cluster File System (OCFS). In Pro Oracle Database 10g RAC on Linux, pages 171–200. Apress, 2006.

[3] http://aws.amazon.com/ec2/instance-types/.

[4] https://thrift.apache.org.

[5] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley &
Sons, 2004.

[6] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a Needle in Haystack: Facebook’s Photo Storage. In
9th USENIX Conference on Operating Systems Design and Implementation, OSDI, 2010.

[7] BeeGFS. http://www.beegfs.com.

[8] S. Benz, P. J. Marandi, F. Pedone, and B. Garbinato. Building global and scalable systems with atomic multicast. In
15th ACM/IFIP/USENIX International Middleware Conference, Middleware, 2014.

[9] J.-M. Busca, F. Picconi, and P. Sens. Pastis: a highly-scalable multi-user peer-to-peer file system. In Euro-Par, 2005.

[10] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A parallel file system for linux clusters. In 4th Annual
Linux Showcase and Conference, ALS, 2000.

[11] Ceph block storage. http://ceph.com/ceph-storage/block-storage/.

[12] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
et al. Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems (TOCS), 31(3):8,
2013.

[13] J. Cowling and B. Liskov. Granola: Low-overhead distributed transaction coordination. In USENIX Annual Tech-
nical Conference, ATC, 2012.

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. In 18th ACM
Symposium on Operating Systems Principles, SOSP, 2001.

[15] A. Davies and A. Orsaria. Scale out with GlusterFS. Linux Journal, 2013(235), Nov. 2013.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-value store. In 21st ACM SIGOPS Symposium on Operating
Systems Principles, SOSP, 2007.

[17] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal of the ACM,
35(2):288–323, 1988.

[18] Email exchange on CephFS mailing list. https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.
html.

[19] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-serializable data services. Theoretical
Computer Science, 220, 1999.

[20] C. J. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial Ordering. In 11th Australian Com-
puter Science Conference, pages 55–66, University of Queensland, Australia, 1988.

[21] File System in User Space (FUSE). http://fuse.sourceforge.net/.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In 19th ACM Symposium on Operating Systems
Principles, SOSP, 2003.

[23] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, June 2002.

15

http://aws.amazon.com/ec2/instance-types/
https://thrift.apache.org
http://www.beegfs.com
http://ceph.com/ceph-storage/block-storage/
https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.html
https://www.mail-archive.com/ceph-users@lists.ceph.com/msg23788.html
http://fuse.sourceforge.net/

[24] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX Annual Technical Conference, ATC, 2010.

[25] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Marti, and E. Cesario. The XtreemFS
architecture – a case for object-based file systems in grids. Concurrency and Computation: Practice and Experience,
20(17):2049–2060, 2008.

[26] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang,
J. Hugg, and D. J. Abadi. H-Store: a high-performance, distributed main memory transaction processing system.
Proc. VLDB Endow., 1(2):1496–1499, 2008.

[27] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gummadi, S. Rhea, W. Weimer, C. Wells, H. Weatherspoon,
and B. Zhao. OceanStore: An architecture for global-scale persistent storage. ACM SIGPLAN Notices, 35(11):190–
201, 2000.

[28] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems
Review, 44(2), Apr. 2010.

[29] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[30] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, May 1998.

[31] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[32] LevelDB. https://github.com/google/leveldb.

[33] G. Liu, L. Ma, P. Yan, S. Zhang, and L. Liu. Design and Implementation of GeoFS: A Wide-Area File System. In 9th
IEEE International Conference on Networking, Architecture, and Storage, NAS, 2014.

[34] P. J. Marandi, M. Primi, and F. Pedone. Multi-Ring Paxos. In IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN, 2012.

[35] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone. Ring Paxos: A High-Throughput Atomic Broadcast Protocol. In
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN, 2010.

[36] MooseFS. https://www.moosefs.org.

[37] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a read/write peer-to-peer file system. In 5th USENIX
Symposium on Operating Systems Design and Implementation, OSDI, 2002.

[38] ObjectiveFS. http://objectivefs.com.

[39] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In USENIX Annual Technical Conference, ATC, 1999.

[40] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In USENIX Annual Technical
Conference, ATC, 2014.

[41] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly. The Quantcast File System. Proc. of the VLDB
Endowment, 6(11):1092–1101, 2013.

[42] S. Patil and G. Gibson. Scale and concurrency of GIGA+: File system directories with millions of files. In 9th
USENIX Conference on File and Storage Technologies, FAST, 2011.

[43] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson, E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and M. T.
O’Keefe. A 64-bit, shared disk file system for linux. In 16th IEEE Symposium on Mass Storage Systems, 1999.

[44] PVFS2. http://www.pvfs.org.

[45] M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a simple way to implement it. Inf. Process.
Lett., 39(6):343–350, Oct. 1991.

[46] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In 18th ACM Symposium on Operating Systems Principles, SOSP, 2001.

[47] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In IFIP/ACM International Middleware Conference, Middleware, 2001.

[48] M. Satyanarayanan. Scalable, secure, and highly available distributed file access. Computer, 23(5):9–18, 1990.

[49] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C. Steere. Coda: A Highly Available File
System for a Distributed Workstation Environment. IEEE Trans. Comput., 39(4):447–459, Apr. 1990.

[50] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Comput-
ing Surveys, 22(4):299–319, 1990.

[51] P. Schwan. Lustre: Building a file system for 1000-node clusters. In Linux Symposium, 2003.

[52] SeaweedFS. https://github.com/chrislusf/seaweedfs.

[53] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In 26th IEEE Symposium on
Mass Storage Systems and Technologies, MSST, 2010.

16

https://github.com/google/leveldb
https://www.moosefs.org
http://objectivefs.com
http://www.pvfs.org
https://github.com/chrislusf/seaweedfs

[54] D. Stamatakis, N. Tsikoudis, O. Smyrnaki, and K. Magoutis. Scalability of replicated metadata services in distrib-
uted file systems. In 12th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable
Systems, DAIS, 2012.

[55] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking, 11(1):17–32, feb
2003.

[56] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek, and R. Morris. Flexible, Wide-Area Storage for
Distributed Systems with WheelFS. In 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2009.

[57] Sun Microsystems, Inc. NFS: Network file system protocol specification. RFC 1094, Network Information Center,
SRI International, Mar. 1989.

[58] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer. Benchmarking file system benchmarking: It *is* rocket science.
In 13th USENIX Workshop on Hot Topics in Operating Systems, HotOS, 2011.

[59] V. Tarasov, A. Gupta, K. Sourav, S. Trehan, and E. Zadok. Terra incognita: On the practicality of user-space file
systems. In 7th USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage, 2015.

[60] A. Thomson and D. J. Abadi. CalvinFS: Consistent WAN replication and scalable metadata management for dis-
tributed file systems. In 13th USENIX Conference on File and Storage Technologies, FAST, 2015.

[61] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In ACM SIGMOD International Conference on Management of Data, SIGMOD, 2012.

[62] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS distributed operating system. In 9th ACM
Symposium on Operating Systems Principles, SOSP, 1983.

[63] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In 7th USENIX Symposium on Operating Systems Design and Implementation, OSDI, 2006.

[64] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH: Controlled, scalable, decentralized placement of
replicated data. In ACM/IEEE conference on Supercomputing, SC, 2006.

17

	Introduction
	System model and definitions
	System architecture
	Components
	Partitioning and replication
	Use of atomic multicast
	Example deployment

	Protocol design
	Execution modes
	The life of some file system operations
	Failure handling

	Implementation
	Client
	Atomic multicast
	Metadata replicas
	Data store

	Evaluation
	Microbenchmarks
	Performance with 3 regions
	Geographical scalability

	Real-world applications

	Related work
	File systems with strong consistency
	File systems with weak consistency
	Peer-to-peer file systems

	Conclusion

