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Abstract—Recent works have shown the use of diffusion geometry for various pattern recognition applications, including non-rigid
shape analysis. In this paper, we introduce spectral shape distance as a general framework for distribution-based shape similarity and
show that two recent methods for shape similarity due to Rustamov and Mahmoudi & Sapiro are particular cases thereof.
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1 INTRODUCTION

Recent works [1], [9], [23], [15], [6], [16] have shown the
use of diffusion geometry for various pattern recognition
applications, including analysis of non-rigid shape and
surfaces. In particular, diffusion geometry arising from
heat propagation on a surface [24], [3] allows defining
shape similarity criteria which are intrinsic, i.e., invari-
ant to inelastic deformations of the surface. The latter
property is especially important in the comparison and
retrieval of non-rigid shapes possessing a high degree
of flexibility [4], [22], [11]. Also, diffusion geometry
appears to be robust to topological noise [6], unlike other
geometries, e.g., geodesic [5].

In this paper, we propose the spectral shape distance,
based on distributions of generic diffusion distances,
and show that this framework generalizes previously
proposed approaches. In particular, our formulation al-
lows to compare the method of Rustamov [23] (modeling
shapes as distribution of commute time distances) and
of Mahmoudi and Sapiro [15] (modeling shapes as dis-
tributions of diffusion distances) and show the relation
between them.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the mathematical background (for a
comprehensive overview of the notions in diffusion ge-
ometry in the continuous and discrete case, we refer the
reader to [9], [12] and [20], respectively). In Section 3, we
present the construction of the spectral shape distances
and discuss their invariance properties. A discussion is
dedicated to the comparison of the methods in [23], [15],
which are regarded as particular cases of our framework.
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In Section 4, we sketch standard approaches to the
discretization of diffusion geometry, and in Section 5
show experimental results. Finally, Section 6 concludes
the paper.

2 BACKGROUND

Let X be a shape, modeled as a compact Riemannian
manifold. In the following, we denote by µ the stan-
dard area measure on X . The L2 norm of a function
f on X with respect to the measure µ is defined by

‖f‖L2(X) =
∫

X

f(x)dµ(x). Equipped with a metric d :

X × X → R+, the pair (X, d) forms a metric space and
the triplet (X, d, µ) a metric measure space.

2.1 Diffusion kernels

A function k : X ×X → R is called a diffusion kernel if it
satisfies the following properties:

(K1) Non-negativity: k(x, x) ≥ 0.
(K2) Symmetry: k(x, y) = k(y, x).
(K3) Positive-semidefiniteness: for every bounded f ,

∫ ∫
k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0.

(K4) Square integrability:
∫ ∫

k2(x, y)dµ(x)dµ(y) < ∞.

(K5) Conservation:
∫

k(x, y)dµ(y) = 1.

The value of k(x, y) can be interpreted as a transition
probability from x to y by one step of a random walk
on X .

Diffusion kernel defines a linear operator

Kf =
∫

k(x, y)f(y)dµ(y), (1)

which is known to be self-adjoint. Because of (K4), K
has a finite Hilbert norm and therefore is compact.
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As the result, it admits a discrete eigendecomposition
Kψi = αiψi with eigenfunctions {ψi}∞i=0 and eigenvalues
{αi}∞i=0. αi ≥ 0 by virtue of property (K3), and αi ≤ 1,
by virtue of (K5) and consequence of the Perron-Frobenis
theorem.

By the spectral theorem, the diffusion kernel admits
the following spectral decomposition property

k(x, y) =
∞∑

i=0

αiψi(x)ψi(y). (2)

Since ψi form an orthonormal basis of L2(X),
∫ ∫

k2(x, y)dµ(x)dµ(y) =
∞∑

i=0

α2
i , (3)

a fact sometimes referred to as Parseval’s theorem. Using
these results, properties (K3–5) can be rewritten in the

spectral form as 0 ≤ αi ≤ 1 and
∞∑

i=0

α2
i < ∞.

An important property of diffusion operators is the
fact that for every t ≥ 0, the operator Kt is also a diffu-
sion operator with the eigenbasis of K and correspond-
ing eigenvalues {αt

i}∞i=0. The kernel of Kt expresses the
transition probability by random walk of t steps. This
allows to define a scale space of kernels, {kt(x, y)}t∈T ,
with the scale parameter t.

2.2 Heat diffusion

There exists a large variety of possibilities to define a
diffusion kernel and the related diffusion operator. Here,
we restrict our attention to operators describing heat
diffusion. Heat diffusion on surfaces is governed by the
heat equation, (

∆X +
∂

∂t

)
u = 0, (4)

where u is the distribution of heat on the surface and
∆X is the positive-semidefinite Laplace-Beltrami opera-
tor, a generalization of the Laplacian to non-Euclidean
domains. For compact surfaces, the Laplace-Beltrami
operator has discrete eigendecomposition of the form
∆Xφi = λiφi.

Diffusion operators associated with heat propagation
processes are diagonalized by the eigenbasis of the
Laplace-Beltrami operator, namely K’s having ψi = φi.
The corresponding diffusion kernels can be expressed as

k(x, y) =
∞∑

i=0

K(λi)φi(x)φi(y), (5)

where K(λ) is some function such that αi = K(λi). Since
the Laplace-Beltrami eigenvalues can be interpreted as

frequency, K(λ) can be thought of as the transfer function
of a low-pass filter.1 Using this signal processing analogy,
the kernel k(x, y) can be interpreted as the point spread
function at a point y, and the action of the diffusion
operator Kf on a function f on X can be thought
of as the application of the point spread function by
means of a non shift-invariant version of convolution.
The transfer function of the diffusion operator Kt is
Kt(λ), which can be interpreted as multiple applications
of the filter K(λ). Such multiple applications decrease
the effective bandwidth of the filter and, consequently,
increase its effective support in space. Because of this
duality, we will freely interchange between k(x, y) and
K(λ) referring to both as kernels.

An important particular case of is the heat oper-
ator Ht defined by the family of transfer functions
Ht(λ) = e−tλ and the associated heat kernels ht(x, y) =∑∞

i=0 e−tλiφi(x)φi(y). The heat kernel ht(x, y) is the so-
lution of the heat equation with point heat source at x

at time t = 0, i.e., the heat value at point y after time t.

2.3 Diffusion distances

Since a diffusion kernel k(x, y) measures the degree of
proximity between x and y, it can be used to define a
metric

d2(x, y) = ‖k(x, ·)− k(y, ·)‖2L2(X), (6)

on X , dubbed the diffusion distance by Coifman and La-
fon [9], [12]. Another way to interpret the latter distance
is by considering the embedding Ψ : x 7→ L2(X) by
which each point x on X is mapped to the function
Ψ(x) = k(x, ·). The embedding Ψ is an isometry between
X equipped with diffusion distance and L2(X) equipped
with the standard L2 metric, since

d(x, y) = ‖Ψ(x)−Ψ(y)‖L2(X). (7)

Because of spectral duality, the diffusion distance can
also be written as

d2(x, y) =
∞∑

i=0

K2(λi)(φi(x)− φi(y))2. (8)

Here as well we can define an isometric embedding
Φ : x 7→ `2 with Φ(x) = {K(λi)φi(x)}∞i=0, termed as
the diffusion map by Lafon. The diffusion distance can be
cast as d(x, y) = ‖Φ(x)− Φ(y)‖`2 .

1. For an insightful discussion of the physical interpretation of the
Laplace-Beltrami operator, the reader is referred to [13].
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The same way a diffusion operator Kt defines a scale
space, a family of diffusion metrics can be defined for
t ≥ 0 as

d2
t (x, y) = ‖Φt(x)− Φt(y)‖2`2 (9)

=
∞∑

i=0

K2t(λi)(φi(x)− φi(y))2,

where Φt(x) = {Kt(λi)φi(x)}∞i=0. Interpreting diffusion
processes as random walks, dt can be related to the
“connectivity” of points x and y by walks of length t

(the more such walks exist, the smaller is the distance).

2.4 Distance distributions

Though diffusion metrics contain significant amount of
information about the geometry of the underlying shape,
direct comparison of metrics is problematic since it re-
quires computation of correspondence between shapes.
A common way to circumvent the need of correspon-
dence is by representing a metric by its distribution, and
measuring the similarity of two shapes by comparing the
distributions of the respective metrics.

A metric d on X naturally pushes forward the product
measure µ × µ on X × X (i.e., the measure defined by
d(µ×µ)(x, y) = dµ(x)dµ(y)) to the measure F = d∗(µ×µ)
on [0,∞) defined as F (I) = (µ×µ)({(x, y) : d(x, y) ∈ I})
for every measurable set I ⊂ [0,∞). F can be fully de-
scribed by means of a cumulative distribution function,
denoted by

F (δ) =
∫ δ

0

dP =
∫

χd(x,y)≤δdµ(x)dµ(y) (10)

with some abuse of notation (here χ is the indicator
function). F (δ) defined this way is the measure of pairs
of points the distance between which in no larger than
δ; F (∞) = µ2(X) is the squared area of the surface X .
The density function (histogram) can be defined as the
derivative f(δ) = d

dδ F (δ). Sometimes, it is convenient
to work with normalized distributions, F̂ = F/F (∞)
and the corresponding density functions, f̂ , which can
be interpreted as probabilities.

Using this idea, comparison of two metric measure
spaces reduces to the comparison of measures on [0,∞),
or equivalently, comparison of un-normalized or nor-
malized distributions, which is carried out using one of
the standard distribution dissimilarity criteria used in
statistics:

Lp dissimilarity: for 1 ≤ p < ∞,

DLp(F,G) =
(∫ ∞

0

|f − g|pdδ

)1/p

; (11)

and for p = ∞,

DL∞(F,G) = sup
δ∈[0,∞)

|f − g|. (12)

Kullback-Leibler dissimilarity:

DKL(F, g) =
∫ ∞

0

(
f log

f

g
+ g log

g

f

)
dδ. (13)

Bhattcharyya dissimilarity:

DBhatt(F, G) = − log
∫ ∞

0

√
fg dδ. (14)

χ2 dissimilarity:

Dχ2(F, G) = 2
∫ ∞

0

(f − g)2

f + g
dδ. (15)

Earth mover’s distance (EMD), which for normalized
univariate distributions is known to be equivalent to

DEMD(F̂ , Ĝ) =
∫ ∞

0

|F̂ − Ĝ|dδ. (16)

3 SPECTRAL SHAPE DISTANCES

In this paper, we propose the spectral distance distri-
butions framework for shape similarity, which will be
shown to generalize several state-of-the-art approaches.
Figure 1 schematically describes the proposed data
flow. Given two shapes, the eigendecomposition of their
Laplace-Beltrami operators is performed. The eigenval-
ues and eigenfunctions are used to define a diffusion
kernel k, which in turn, is used to define a family of
scale-dependent diffusion distances between points on
the shapes. Next, the distributions of pair-wise distances
are computed. The dissimilarity of two shapes is thus
converted into dissimilarity of distributions. Multiple
scales are merged into a single spectral shape distance
by means of an aggregation operation, which can be
performed after either of the above stages (possible
locations of the integration operator are denoted in red
in the figure). We individuate four main components in
this framework:

Kernel: According to (5), the diffusion kernel k(x, y) is
described by the transfer function K(λ). The dependence
on the scale parameter is introduced by taking the
powers Kt. The kernel can be selected to satisfy certain
invariance properties, as detailed in the next section.

Norm: A generalized diffusion distance dt(x, y) is
defined as a cross-talk between the diffusion kernels,
dt(x, y) = ‖kt(x, ·) − kt(x, ·)‖, using some norm. For the
choice of L2(X), the diffusion distance has an explicit
expression according to (9). It is remarkable that some
selections of transfer functions may result in kernels
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Kernel Distance Distribution

Dissimilarity{λi} {kt} {dt} {ft}

{gt}
{Dt}

K(λ) ‖ · ‖ hist

K(λ) ‖ · ‖ hist

A(kt) A(dt) A(ft)

A(kt) A(dt) A(gt)

D A(Dt)

Fig. 1. Data flow in the proposed approach: for each of the compared shapes, a transfer function K(λ) and the norm
‖ · ‖ define a family of pair-wise distances. Shape dissimilarity is cast as distribution dissimilarity using the criterion D.
Aggregation of different scales can be performed at any of these stages as denoted in dashed red.

violating properties of (K1–5) and lead to distances that
are not metrics. Comparison of distributions of such
distances may still be very useful.

Dissimilarity D(F, G) is used to compare the distance
distributions, as detailed in Section 2.4.

Aggregation: the specific way to aggregate the scales
and its position in the pipeline, as detailed in Section 3.2.

3.1 Invariance

The described framework is very generic and different
choices of the transfer function K and the scale integra-
tion method lead to different shape similarity criteria.
In practical applications, specific choices are driven by
desired invariance considerations: it is possible to design
K in such a way that it is invariant to certain classes of
shape transformation.

Deformation invariance: Since the Laplace-Beltrami
operator is intrinsic (i.e., fully expressible in terms of
the Riemannian metric of the surface), its eigenfunctions
and eigenvalues are invariant to inelastic bendings. As a
result, diffusion kernels based on φi, λi are deformation-
invariant, and so are distributions of the related dis-
tances.

Topological invariance: In many practical applica-
tions, shapes suffer from “topological noise”, resulting
in different local connectivity. This is a typical situation
when shapes are scanned by a 3D range camera. The
change in connectivity alters the diffusion distances by
introducing “shortcuts”; however, these artifacts have
different effect at different scale. For large t, the influence
of the shortcuts is smaller.

Scale invariance: When a shape X ′ is obtained by
uniformly scaling X by a factor α > 0, the eigenvalues
of the Laplace-Beltrami operator are scaled according
to λ′i = α−2λi, and the corresponding L2-normalized
eigenfunctions become φ′i(x) = α−1φi(x). A diffusion
kernel defined by a transfer function K(λ) therefore

becomes

k′(x, y) =
1
α2

∞∑

i=0

K(λ/α2)φi(x)φi(y). (17)

When, for example, the Lp norm is used, the correspond-
ing diffusion distance is given by

d′(x, y) =
∫
|k′(x, z)− k′(y, z)|pdµ′(z) (18)

=
∫ ∣∣∣∣∣

∞∑

i=0

α2/p−2K(λ/α2)φi(z)(φi(x)− φi(y))

∣∣∣∣∣

p

dµ(z).

In order to obtain a scale-invariant distance, the transfer
function K(λ) must satisfy K(λ/α2) = α2−2/pK(λ).
Functions satisfying this property are K(λ) = λ−1/p.

In the particular case p = 2, the kernel K(λ) = λ−1/2

defines a distance

d2
CT(x, y) =

∫ ∞∑

i=1

1
λi

φ2
i (z)(φi(x)− φi(y))2dµ(z)

=
∞∑

i=1

1
λi

(φi(x)− φi(y))2 (19)

(note that the singularity at λ0 = 0 can be removed
starting the summation from i = 1, since φ0 = const).
Such a distance is known in spectral graph theory as
the commute time distance, and can be thought of as the
average time of a walk starting at x to go through y

and return back to x (called the commute time, hence
the name). Invoking the relation

∫∞
0

e−λtdt = 1
λ , the

commute time distance can interpreted as the integral
of the squared heat diffusion distance d2

t over the entire
time scale,
∫ ∞

0

d2
t (x, y) =

∞∑

i=0

∫ ∞

0

e−2λitdt(φi(x)− φi(y))2 (20)

=
∞∑

i=0

1
2λ

(φi(x)− φi(y))2 =
1
2
d2
CT(x, y).

Equivalently, the commute time kernel KCT(λ) = λ−1/2 can
be though of as the integral of the heat kernel, K2

CT(λ) =∫∞
0

Ht(λ)dt.
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3.2 Scale aggregation

The derivation of the commute time kernel and the
commute time distance from the corresponding heat
kernel and diffusion distance can be interpreted as the
application of a scale aggregation functional on {Ht(λ)}t>0

or {dt(x, y)}t>0. Examples of such aggregation function-
als are

Sum or, more generally, weighted sum A(ft) =∫
T

w(t)ft dt where w is some scale-dependent weighting
function and T is some range of scales.

Sum of squares or, more generally, sum of non-
linearities A(ft) =

∫
T

ξ(ft) dt, where ξ is a scalar non-
linearity.

Maximum: A(ft) = supt∈T ft.
Here, ft denotes a family of scale-dependent objects. De-
pending on the stage at which aggregation is performed,
aggregation functionals can be classified as

Kernel aggregation: A acting on {Kt(λ)} or {kt(x, y)}.
Distance aggregation: A acting on {dt(x, y)}.
Distribution aggregation: A acting on {Ft} or {ft}.
Dissimilarity aggregation: A acting on {D(Ft, Gt)}.

This resembles the spirit of the aggregation of multi-scale
dissimilarities of histograms-based descriptors proposed
in [14].

3.3 Relation to other methods

Diffusion distance distributions: In [15], Mahmoudi
and Sapiro proposed applying the shape distribution
approach to heat diffusion distances. Given two shapes
X and Y with distribution densities fX and fY of the
corresponding diffusion distances dX,t, dY,t, Mahmoudi
and Sapiro defined a similarity criterion as dMS,t(X, Y ) =
‖fX−fY ‖2. This criterion can be regarded as a particular
case of our spectral shape distance, with the heat kernel
Kt(λ) = e−λt, L2(X) norm, and the L2 distribution
dissimilarity. The diffusion distances are taken at some
single fixed scale t; no scale aggregation is performed.
Choosing different t allows describing small- and large-
scale properties of the shape (for example, two shapes
can be similar at small scale and dissimilar on large
scales or vice versa). At the same time, the scale depends
on the shape size and the choice of t can often be
problematic [20].

Diffusion scale-space distance: In [7], we proposed
a way to address the problem of scale selection by
integrating the Mahmoudi-Sapiro distance on a set of
scales, resulting in what was termed the diffusion scale-
space distance, dDSS(X, Y ) =

∑
t∈T dMS,t(X,Y ), where T

denotes some set of time scale. Such a distance has the
advantage of comparing shape properties at multiple
scales, considering each scale separately.

dDSS is also spectral shape distance with the heat
kernel Kt(λ) = e−λt, diffusion distance defined with
the L2(X) norm, and L2 distribution dissimilarity. The
aggregation is performed on distribution dissimilarities
using sum

∑
t∈T over a finite set of scales T .

Global point signature: In [23], Rustamov pro-
posed the global point signatures (GPS) representation for
shapes based on the eigenmap of the form ΨX(x) =
{λ−1/2

i φi(x)}∞i=1. Given two shapes X,Y , Rustamov
looked at the corresponding ΨX and ΨY as Euclidean
objects with distances defined by dX(x, y) = ‖ΨX(x) −
ΨX(y)‖L2(X) (similarly for dY ), and computed the dis-
tance between the shapes X,Y as the L2 dissimilarity of
the distributions of the distances dX , dY , dGPS(X,Y ) =
‖fX − fY ‖2. This method can be considered as an ap-
plication of the shape distributions approach [17] to the
embeddings ΨX , ΨY .

The GPS distance can be cast as a particular setting
of the spectral shape distance with the commute time
kernel K(λ) = λ−1/2, L2(X) norm, L2 distribution
dissimilarity, and no scale aggregation, or, alternatively,
as a the spectral distance with the heat kernel, L2(X)
norm, and aggregation of diffusion distances using the
sum of squares on t ∈ [0,∞).

Considering all the three aforementioned methods
from the standpoint of our framework, we can clearly
see their equivalence up to position of the scale inte-
gration operation. In dMS,t, the heat diffusion distance is
computed at a single scale t, then distribution distance is
computed, without doing any scale integration. In dGPS,
integration is performed before computing the distribu-
tion. In dDSS, integration is performed after computing
the distribution distances.

Scale invariant heat kernel signature: In [8], it was
observed that using the logarithmic scale τ = log t, the
heat kernel on X and its counterpart on X ′ uniformly
scaled by a factor α > 0 are related by log k′τ = log kτ+β+
β, where β = −2 log α. Taking the derivative of log kτ

with respect to τ undoes the additive constant β, while
the shift in τ can be undone in the Fourier domain by
canceling the phase. The resulting family of kernels,

k̂τ (x, y) = F−1

(∣∣∣∣F
(

∂

∂τ
log kτ (x, y)

)∣∣∣∣
)

, (21)

is scale invariant. From the point of view of the proposed
framework, the above transformation can be thought of
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as a scale aggregation functional acting on the kernel.
It can be further followed by selection of a single value
of τ or aggregation of several scales in the previously
discussed way. Though the kernel k̂τ is not a valid
diffusion kernel (e.g., it can assume negative values),
the resulting “distance” is still informative. We intend
to investigate this interesting relation in future studies.

4 NUMERICAL IMPLEMENTATION

For numerical computation, the shape X is represented
by a finite number of samples X̂ = {x1, ..., xN} ⊆ X . The
discrete approximation of the Laplace-Beltrami operator
has the following generic form

(∆X̂u)i =
1
ai

∑

j

wij(ui − uj), (22)

where u = (u1, ..., uN ) is a scalar function defined on
X̂ , wij are weights, and ai are normalization coeffi-
cients. In matrix notation, Equation (22) can be written
as ∆X̂u = A−1Lf , where A = diag(ai) and L =
diag

(∑
l 6=i wil

)
− (wij) are sparse matrices. The eigen-

values and eigenfunctions of the discretized Laplace-
Beltrami operator are computed by solving the gener-
alized eigendecomposition problem AΦ = ΛLΦ, where Λ
is the (k + 1) × (k + 1) diagonal matrix of the smallest
eigenvalues λ0, ..., λk, and Φ is an N × (k + 1) matrix of
corresponding eigenfunctions [13].

Discrete Laplace-Beltrami operator. Different dis-
cretizations of the Laplace-Beltrami operator lead to
different choice of A and W [21]. For triangular meshes,
a popular choice is the cotangent weight scheme [19], in
which wij = cot αij + cot βij (αij and βij are the two
angles opposite to the edge between vertices i and j

in the two triangles sharing the edge) for j in the 1-
ring neighborhood of vertex i and zero otherwise, and
ai is one third of the area of the triangles sharing the
vertex xi. This discretization preserves many important
properties of the continuous Laplace-Beltrami operator,
such as positive semi-definiteness, symmetry, and lo-
cality, and in addition it is numerically consistent. For
shapes represented as point clouds, the Laplace-Beltrami
operator can be approximated using [2].

Approximation quality and complexity. In practice,
numerical inaccuracy due to the discretization of the
Laplace-Beltrami operator imposes a limit on the number
k of eigenvalues and eigenvectors that can be accu-
rately computed. Typical complexity of computing k first
eigenvectors of a sparse symmetric matrix is O(Nk) with

the Arnoldi algorithm used in MATLAB function eigs.
This should be taken into consideration when choosing
the transfer function K(λ): ideally, it should decay fast
enough to allow taking a small number of eigenvalues,
thus reducing the computation complexity. Specifically
in the particular cases discussed in Section 3.3, numerical
approximation of the commute time distance (19) is less
favorable compared to the heat diffusion distance,since
the decay of the terms e−λt is faster than λ−1/2 for typical
choice of t.

5 RESULTS

We used a subset of 486 shapes from the Shape-
Google database [18], containing different shapes with
simulated transformations. The transformations include
null (no transformation), isometry (near-isometric bend-
ing), topology (connectivity change obtained by welding
some of the shape vertices), isometry+topology (com-
bination of the previous two), triangulation (different
meshing of the same shape), and partiality (missing
information, obtained by making holes and cutting parts
off the shape). Multiple instances of each transformation
are present for each shape class.We performed a leave-
one-out retrieval experiment, in which each class of
transformations was queried against a database con-
taining the remaining transformations. Matches were
consider correct between different transformations of
the same shape. The average precision (area under the
precision-recall curve) was measured for each query
shape, and the mean average precision (mAP) was used as
a single number quantifying the retrieval performance
for each class of transformations. As an additional qual-
ity measure, for each class of transformations the receiver
operating characteristic (ROC) curve was computed, rep-
resenting a tradeoff between the percentage of similar
shapes correctly identified as similar (true positives rate
or TPR) and the percentage of dissimilar shapes wrong-
fully identified as similar (false positive rate or FPR). For
additional details, the reader is referred to [18].

Experiments. We performed several experiments to
reveal the influence of the choice of the different pro-
cessing stages in Figure 1. While these experiments
do not attempt to entirely cover the entire space of
possible choices, we believe they provide a sufficiently
interesting insight about the importance of each ingredi-
ent. We denote each choice as Kernel-Norm-Dissimilarity-
Aggregation, according to Section 3. As Kernel, we used
K(λ) = e−λ (heat kernel, abbreviated as H), λ−1/2
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TABLE 1
mAP (%) of Heat-L2-Dissimilarity -Single for different distribution dissimilarities.

Transform. L1 L2 nL1 nL2 K-L Bhatt χ2 EMD
Null 96.19 95.59 96.19 95.82 93.96 94.81 95.10 93.83
Isometry 94.62 93.27 94.62 94.07 91.59 92.71 93.42 90.56
Iso+Topo 89.43 87.32 89.43 87.56 85.73 86.89 87.31 85.13
Partiality 90.49 90.92 90.48 91.38 84.74 88.62 90.06 78.78
Topology 83.40 83.82 83.39 83.73 65.80 68.57 70.07 69.31
Triang. 92.54 91.56 92.55 91.81 90.38 91.04 91.23 84.68
Noise 89.14 89.26 89.16 89.34 85.03 86.67 87.45 86.06
All 90.93 90.22 90.94 90.56 86.12 87.86 88.62 84.23

(commute time kernel, abbreviated as CT), and the Step
function. As Norm, we used L1, L2, and L∞. The Kernel-
Norm pair fully defines the spectral distance used in
the distribution computation. For reference, we also
show retrieval using distributions of geodesic distances
(denoted as Geo) as proposed in [10]. As Dissimilarity,
we used the L1, L2, normalized L1 (nL1), normalized
L2 (nL2), KL, Bhattcharyya, χ2, and EMD, as detailed in
Section 2.4. For scale Aggregation, we tested a few simple
choices applied at the last stage aggregating distribution
dissimilarities at different scales, using Single scale selec-
tion, Sum, Sum2, and Max, as detailed in Section 3.2.

In all experiments, distributions were computed in
the interval from 0 to the 95-percentile of the distances
on the entire corpus of shapes. The Parzen window
technique was used to produce the histograms with the
window bandwidth set to 1

256 of the interval length. The
histograms were sampled on 256 evenly spaced bins.

Dissimilarity choice. In this experiment, we evalu-
ated the choice of different dissimilarity functions used
to compare between distributions. The Heat-L2 spectral
distance was fixed with a single time scale t = 1024,
evaluating the retrieval performance of different choices
of the form Heat-L2-Dissimilarity-Single. Table 1 summa-
rizes the mean average precision of each dissimilarity
function in different transformation classes. While there
is no absolute winner in all classes, the normalized L1

dissimilarity performs the best in four out of seven
classes, close to the best in other three, and wins in
overall performance. This behavior is observed consis-
tently for other choices of spectral distances. Based on
this observation, we use the normalized L1 dissimilarity
in all further experiments.

Kernel-Norm choice. In this experiment, we fixed the
distribution dissimilarity to nL1 and evaluated the per-
formance of different spectral distances. We evaluated
the performance of Kernel-Normal-nL1-Single with the

TABLE 2
mAP (%) of Kernel-Normal-nL1 for different spectral distances.

Transform. H-L2 H-L1 H-L∞ CT-L2 Step-L2 Geo
Null 96.19 95.41 94.61 94.41 96.35 94.85
Isometry 94.62 92.84 90.31 91.89 95.18 90.98
Iso+Topo 89.43 91.48 87.17 83.69 93.41 84.88
Partiality 90.48 82.27 82.85 78.05 87.68 84.29
Topology 83.39 98.29 85.73 86.65 98.92 96.24
Triang. 92.55 91.59 91.57 89.78 92.93 90.14
Noise 89.16 84.68 81.70 92.21 82.53 85.33
All 90.94 89.87 87.17 87.29 91.65 88.32
Scale 30.55 15.58 28.28 100.00 17.27 31.07

TABLE 3
mAP (%) of H-L2-nL1-Aggregation, for different aggregation

functionals.

Transform. t = 1024 t = 4096 Sum Sum2 Max
Null 96.19 93.07 96.42 96.54 96.51
Isometry 94.62 89.06 93.90 94.06 94.24
Iso+Topo 89.43 82.42 89.03 89.20 91.75
Partiality 90.48 80.22 88.75 89.06 90.37
Topology 83.39 65.49 83.37 87.03 98.23
Triang. 92.55 84.43 92.70 92.83 92.91
Noise 89.16 86.48 92.31 92.43 92.45
All 90.94 83.37 90.90 91.37 93.05

heat kernel and L1, L2 and L∞ norms, the commute
time and step kernels with the L2 norm. For compari-
son, the performance of Geo-nL1-Single is given. Since
geodesic distances are known to be sensitive to large-
scale changes in topology, it is usually helpful to re-
strict the distances within a certain radius. The reported
results were obtained with d ≤ 100 which maximized
performance. Table 2 summarizes the measured mAP
broken down by transformation class. Step kernel with
the L2 norm performs the best in five out of seven
classes and achieves the highest overall performance.
The heat kernel with the L∞ norm achieves the low-
est overall performance followed by the commute time
kernel and geodesic distances. As another reference,



IEEE TRANS. PAMI 8

we show the mAP of the compared distances under
global scale transformations ranging from 125% to 200%.
Poor performance is obtained by all methods with the
exception of commute time kernel that scores 100% mAP.
This gives an experimental evidence to scale invariance
of commute time distances and lack of scale invariance
of geodesic and diffusion distances.

Aggregation choice. In this experiment, we evaluated
the importance of aggregation of distribution dissimilar-
ities at different scales. The nL1 dissimilarity of the Heat-
L2 spectral distance distribution was computed at six
time scales t ∈ {1024, 1351, 1782, 2352, 3104, 4096}. The
performance of Heat-L2-nL1-Aggregation was evaluated
for two single scales t = 1024 and 4096 as well as for
the sum, sum of squares, and maximum aggregation
functions. Table 3 summarizes the results. We conclude
that using the maximum function achieves the best
overall mAP. An even bigger gain is seen from the ROC
curves in Figure 2, where performance is evaluated in
terms of false positive and negative rates.

6 CONCLUSION

We presented a generic framework for computing the
similarity of non-rigid shapes based on the distributions
of diffusion distances. Our framework allows building in
explicit invariance properties, and also generalizes pre-
vious approached due to Rustamov [23], Mahmoudi and
Sapiro [15], and [7]; the presented formulation brings in-
sights on the relations and equivalence of these methods.
An important question left undiscussed in this paper is
the construction of an optimal task-specific kernel K(λ).
We plan to address this problem in follow-up works.
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Fig. 2. ROC curves of (a) H-L2-nL1-Single, t = 1024; (b) H-L2-nL1-Single, t = 4096; (c) H-L2-nL1-Max,
t ∈ [1024, 4096]; (d) Geo-nL1-Single; (e) CT-L2-nL1-Single; and (F) Step-L2-nL1-Single, t = 1024.


