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Abstract—Bilateral filter is one of the state-of-the-art methods for noise
reduction in images. The plausible visual result the filter produces makes
it a common choice for image and video processing applications, yet,
its high computational complexity makes a real-time implementation a
challenging task. Presented here is a parallel version of the bilateral filter
using a lazy sliding window, suitable for SIMD-type architectures.

Index Terms—bilateral filter, lazy sliding window, retinex, noise reduc-
tion.

I. INTRODUCTION

Noise reduction is an important task in many image or video pro-
cessing applications. Here, we understand the term “noise” in a broad
sense, referring to random noise present in analog sources, digital
image and video artifacts resulting from compression (high-frequency
quantization and blocking), false contouring artifacts resulting from
quantization, etc. Reducing noise in images, in addition to improving
the visual quality, allows improving the compressibility of the image.
In video sequences, noise reduction facilitates block matching in
motion-adaptive video processing algorithms.

Bilateral filter is a class of method for non-linear content adaptive
image processing, introduced in [1] (for an earlier work introducing
the same principle in the formulation of a PDE processing referred
to as Beltrami flow see [2], and an extension referred to as non-
local means see [3]). The plausible visual result the filter produces,
in particular, the edge preservation property, makes it a common
choice in image and video processing applications. In addition to
direct applications related to noise reduction, bilateral filter is the
core of many adaptive dynamic range extension (retinex) algorithms
[4], [5].

For a grayscale image Ik,j , k = 1, ..., N ; j = 1, ...,M with
intensity levels in the range [0, 255], the filter computes each output
pixel Îk,j as a weighted average of its neighbors in the window
around Ik,j ,

Îk,j =
1

wk,j

P∑
m=−P

P∑
n=−P

wk,j,m,nIk−m,j−n. (1)

The weights are inversely related to the spatial and radiometric
distance between the pixels,

wk,j,m,n = e
−m2+n2

2σ2
s e

−
(Ik,j−Ik−m,j−n)2

2σ2
r ,

and

wk,j =

P∑
m=−P

P∑
n=−P

wk,j,m,n

is a normalization guaranteeing that all the filter coefficients add up to
one. σs and σr are the spatial and radiometric variance parameters
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governing the filter behavior (roughly, the larger the variance, the
smoother is the result). The window size is (2P + 1) × (2P + 1)
pixels, with P typically varying between 5 to 15.

Straightforward computation of the bilateral filter (1) is performed
using a sliding window. For each pixel in the raster scan order,
neighbor pixels within a window around it are taken and used to
compute the filter output; the window is moved right by one pixel
and so on (Figure 1, left).

Due to the large amount of computations in such an approach, a
real-time implementation of the filter, especially in high-definition
images and videos is extremely challenging. Several accelerations
have been proposed for the bilateral filter. Durand et al. [6], [7]
showed an approximation by a sum of linear filters. Pham and van
Vliet [8] showed a separable version of the bilateral filter. Weiss [9]
proposed a method based on an efficient histogram computation.

This paper deals with an efficient implementation of the bilateral
filter on parallel architectures of digital signal processors. The fact
that the bilateral filter applies the same processing at every pixel
makes it especially suitable for SIMD (single instruction multiple
data) type processors, such as many modern DSPs and multimedia
extensions in many general purpose CPUs (e.g., Intel SSE). We
propose a special type of raster scan referred to as the lazy sliding
window, which allows performing bilateral filtering in a manner
efficient both in storage and the number of computations.

The rest of the paper is organized as follows. Section 2 describes
the Durand-Dorsey acceleration. In Section III, we describe an
efficient parallel implementation of the Durand-Dorsey scheme using
the lazy sliding window approach. Section IV shows simulation
results. Section V discusses possible extensions and applications, and
Section VI concludes the paper.

II. DURAND-DORSEY ACCELERATION

If the intensity Ii,j is assumed a constant c, the non-linear bilateral
filter (1) can be expressed as a linear filter,

Îck,j =
1

wk,j

P∑
m=−P

P∑
n=−P

e
−m2+n2

2σ2
s e

−
(c−Ik−m,j−n)2

2σ2
r Ik−m,j−n

=
1

wk,j

P∑
m=−P

P∑
n=−P

e
−m2+n2

2σ2
s gck−m,j−n, (2)

where gci,j = e
−

(c−Ii,j)2

2σ2
r Ii,j is computed by applying a Gaussian

non-linearity and wk,j are normalization factors defined by

wk,j =

P∑
m=−P

P∑
n=−P

e
−m2+n2

2σ2
s e

−
(c−Ik−m,j−n)2

2σ2
r .

Using this observation, Durand and Dorsey [6] proposed an ap-
proximation to the bilateral filter by dividing the dynamic range of
the image intensity levels into L+ 1 equal bands using a linear filter
approximation (2) in each band. The results are then merged in the
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Fig. 1. Filtering using sliding window (left) and lazy sliding window (right).
Shown in solid and dotted lines are two subsequent positions of the window.

following way:

Îi,j ≈
L∑
l=0

µi,j · Îl∆i,j ,

where ∆ = 255L−1 is the intensity band width and µi,j = max{1−
∆−1|Ii,j − l∆|, 0} is a soft mask (triangular window) determining
whether the (i, j)-th pixel belongs to the l-th band.

The Durand-Dorsey approach offers a significant acceleration
compared to the straightforward bilateral filter computation. The
number of intensity levels L (typically, between 10 and 50) is a
parameter for performance-quality tradeoff. Furthermore, since for a
typical selection of the window size P and spatial variance σs, the
spatial part of the filter is approximately constant in the window, the
Gaussian blur can be replaced by simple averaging [9]. Finally, a
further acceleration can be achieved by first reducing the resolution
of Ii,j and then performing the averaging; in this case, a smaller
window is needed. The merging is performed after upscaling the
results to the original resolution.

The linear filters in each band can be computed efficiently using
convolution operations on parallel architectures. The disadvantage is,
however, that merging the bands (involving a non-linear operation)
requires the storage of all the convolution results. A sliding window
approach computing the filter result at each pixel in raster-scan order
is advantageous in the sense that it does not require significant stor-
age, but does not exploit the main advantage of SIMD architectures,
which is the ability to compute several results (filtered pixels) at once.
In the following section, we address this problem.

III. LAZY SLIDING WINDOW

In order to take advantage of the SIMD parallelism, we introduce
the lazy sliding window approach. Instead of looking on one central
pixel and a window around it, we have a block of K × K pixels
(central block) and slide the window in increments of K. The window
is the same for all the pixels in the central block (Figure 1, right).
The window size is K(2P + 1) × K(2P + 1), where P now
denotes the window size in blocks of size K × K (for simplicity,
we assume hereinafter that M,N are divisible by K). Moving the
window horizontally in a row requires the load of only 2P + 1 next
vertically adjacent blocks of size K × K. When P is sufficiently
large, the lazy sliding window approach is (asymptotically) identical
to the traditional sliding window.

The bilateral filter with the Durand-Dorsey acceleration can be
implemented using this approach as shown in Algorithm 1. The
original Durand-Dorsey algorithm is a particular case of K = 1.
Note that Stages 3–7 are mostly element-wise operations with K×K
matrices Ii,j ,Gi,j , and Mi,j and can be carried out efficiently on a
SIMD-type digital signal processor capable of performing K2 single-
instruction multiple-data operations. Furthermore, with an addition of

a minimum (VMIN) and maximum (VMAX) operation on the block
pixels, Steps 3–7 can be skipped for values of l for blocks in which
max
m,n
{Im,n} < (l − 1)∆ and max

m,n
{Im,n} > (l + 1)∆.

Input: parameters K,P,L and σr; input image I divided into
K ×K blocks, Ii,j , i = 1, ...,M/K, j = 1, ..., N/K.

Output: filtered image Î .
1 for l = 0, ..., L do
2 for every block Ii,j in raster scan order do
3 Compute the non-linearity for the neighbor blocks in a

pixel-wise manner,

Gi+k,j+q
m,n = e

−
(l∆−I

i+k,j+q
m,n )

2

2σ2
r , k, q = −P, ...,+P.

4 Weight h =
∑K

m,n=1

∑P

k,q=−P Gi+k,j+q
m,n · Ii+k,j+qm,n .

5 Normalization w =
∑K

m,n=1

∑P

k,q=−P Gi+k,j+q
m,n .

6 Mask Mi,j
m,n = max{1−∆−1|Ii,jm,n − l∆|, 0}.

7 Merge Îi,jm,n ← Îi,jm,n + Mi,j
m,nh/w.

8 end
9 end

Algorithm 1: Lazy sliding window bilateral filter

A. Pipelining

Since the lazy sliding window moves at each step by one
block, the computations of Stages 3–6 from previous steps can
be reused. If we store the previous values of Gi,j , we have
to perform Stage 3 for the new 2P + 1 blocks only. If in
addition we store the sums

∑K

m,n=1

∑P

k=−P

∑P−1

q=−P Gi+k,j+q
m,n

and
∑K

m,n=1

∑P

k=−P

∑P−1

q=−P Gi+k,j+q
m,n · Ii+k,j+qm,n on Stages

5 and 4, respectively, after sliding the window, we have
to add only the contributions

∑K

m,n=1

∑P

k=−P Gi+k,j+P
m,n and∑K

m,n=1

∑P

k=−P Gi+k,j+P
m,n · Ii+k,j+Pm,n of the new blocks. This

allows efficient pipelining.
In a pipelined version of the lazy sliding window bilateral filter,

four buffers for storing (2P + 1) × (2P + 1) blocks of Ii,j and
computation results

∑K

m,n=1
Gi,j
m,n,

∑K

m,n=1
Gi,j
m,n·Ii,jm,n, and Mi,j

are kept, denoted by BIk,q , BW k,q , BHk,q and BMk,q (k, q =
−P, ..., P ), respectively. The total size of the buffers is (2P + 1)2×
(2K2 + 2) pixels. Sliding the window shifts the buffers to the left,
adding new values to the right (Algorithm 2).

B. Complexity analysis

For the purpose of complexity analysis, we assume that a SIMD
processor is capable of performing single instruction on a register
containing values of K2 pixels (or alternatively, a K × K matrix
of pixels) at once. The stages of Algorithm 2 have the following
complexity:

• Stage 4 Load: CLOAD × (2P + 1) in the steady state.
• Stage 5 (element-wise nonlinearity): CNL × (2P + 1).
• Stage 6 (normalization): summation of pixels in each block:
CV ADD × (2P + 1).

• Stage 7 (filter): element-wise multiplication: CMUL×(2P +1),
summation of pixels in each block: CV ADD × (2P + 1).

• Stage 8 (mask): element-wise maximum: CMAX × (2P + 1).
• Stage 9 (merge): element-wise multiplication: CMUL, element-

wise addition: CADD , element-wise division: CDIV .
The outcome are K2 filtered pixels and the total complexity is

C = L× (CLOAD× (2P +1)+CNL× (2P +1)+CMUL× (2P +
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1 for l = 0, ..., L do
2 for every block Ii,j in raster scan order do
3 Shift the buffers to left BIk,q−1 ← BIk,q ,

BMk,q−1 ← BMk,q , BW k,q−1 ← BW k,q , and
BHk,q−1 ← BHk,q for k = −P, ..., P .

4 Load 2P + 1 image blocks to rightmost part of the
buffer BIk,P ← Ii+k,j+P ; k = −P, ..., P .

5 Compute the non-linearity

Gk
m,n = e

−
(l∆−BI

k,P
m,n)

2

2σ2
r ; k = −P, ..., P.

6 Buffer BW k,P =
∑K

m,n=1
Gk
m,n; k = −P, ..., P .

7 Buffer BHk,P =
∑K

m,n=1
Gk
m,nBIk,Pm,n;

k = −P, ..., P .
8 Buffer BMk,P

m,n = max{1−∆−1|BIi,Pm,n − l∆|, 0}.
9 Merge Îi,jm,n ← Îi,jm,n + BM0,0

m,nBH
0,0/BW 0,0.

10 end
11 end

Algorithm 2: Pipelined lazy sliding window bilateral filter (for
simplicity, boundary effects are ignored)

Durand- Lazy sliding window (K =) Non-
Dorsey 2 3 4 6 linear

LOAD 46.69 5.98 1.63 0.78 0.22 41
NL 46.69 5.98 1.63 0.78 0.22 1681
MUL 47.69 6.23 1.74 0.85 0.25 1681
VADD 93.34 11.96 3.25 1.57 0.44 3362
MAX 46.69 5.98 1.63 0.78 0.22 -
DIV 1 0.25 0.11 0.06 0.03 1
ADD 1 0.25 0.11 0.06 0.03 -
Total 283.17 36.63 10.08 4.86 1.40 6766

TABLE I
NUMBER OF K ×K SIMD INSTRUCTIONS PER PIXEL PER BAND,

ASSUMING IMAGE OF SIZE 288× 288, WINDOW OF APPROXIMATELY THE
SAME SIZE 40× 40, AND ACCOUNTING FOR BOUNDARY EFFECTS. FOR

COMPARISON, THE COMPLEXITY OF NON-LINEAR BILATERAL FILTER
(WITH CONSTANT SPATIAL COMPONENT, σs � 1) IS SHOWN.

2)+2CV ADD×(2P+1)+CMAX×(2P+1)+CADD+CDIV ) for
each position of the window, excluding boundary effects. The window
is slided M/K × N/K times, which gives the total complexity of
C/K2 per pixel. Most of the operations, excluding summation of
vector elements on stages 6 and 7, are vertical SIMD operations.

Note that in order to obtain approximately the same window size
(K(2P + 1)×K(2P + 1)), we need a smaller P for larger values
of K. Thus, the performance gain in the proposed approach is two-
fold: first, from performing SIMD operations in parallel (giving a
K2 boost) and second, from reducing the overhead by using bigger
blocks and thus having smaller P , which is similar to the gain from
downsampling proposed in [7] (see Table I). The latter results in
a significant complexity gain per se, which can be observed if we
normalize the results in Table I by K2 in order to compare the number
of pixel-wise instructions: the gain from using our approach compared
to Durand-Dorsey ranges from 1.9 (K = 2) to 5.6 (K = 6). It should
be noted that the value of K depends on the size of the SIMD register,
and thus the implementation performance is architecture-dependent.

IV. RESULTS

To test our approach, we compared different approximations of
the bilateral filter on several test images. 1 In the first experiment,

1Code will be available at www.inf.usi.ch/bronstein

we compared the original non-linear bilateral filter (1) with the
Gaussian filter replaced by averaging (corresponding to the case
σs � 1), the Durand-Dorsey implementation, and the pipelined lazy
sliding window on the problem of denoising the 288 × 288 Lena
image contaminated by mild additive Gaussian noise (Figure 2, first
column). In all the compared methods, window of approximately the
same size (41× 41) and σr = 10 were used. In the Durand-Dorsey
and our method, we used L = 10; lazy sliding window was of sizes
K = 2, 3, 4, and 6 with corresponding P = 10, 6, 5, and 3.

Figure 2 compares the outcome of different approaches, which
are visual nearly identical. Table II compares the complexity and
RMS/maximum error w.r.t. the non-linear bilateral filter. The pro-
posed method offers significant speedup compared to the Durand-
Dorsey approach, while being almost equally good approximation of
the bilateral filter in terms of RMS error and even better in terms of
maximum error.

Durand- Lazy sliding window (K =) Non-
Dorsey 2 3 4 6 linear

Complexity 2831.7 366.3 100.8 48.86 14 6766
RMS error 0.81 1.05 1.04 1.09 1.09 -
Max error 18.64 11.4 11.21 11.52 11.78 -

TABLE II
COMPARISON OF DIFFERENT APPROXIMATIONS OF THE BILATERAL FILTER

PERFORMED ON LENA IMAGE OF SIZE 256× 256, USING WINDOW OF
APPROXIMATELY THE SAME SIZE (41× 41), σr = 10, L = 10, AND

ACCOUNTING FOR BOUNDARY EFFECTS. COMPLEXITY IS GIVEN IN TOTAL
NUMBER OF K ×K SIMD INSTRUCTIONS PER PIXEL. ERROR IS W.R.T.

THE NON-LINEAR BILATERAL FILTER.

Figure 3 show the influence of the number of bands L. Slight
artifacts are visible in the form of artificial contours for small L (3 and
5). We found empirically that L between 10 and 20 provides plausible
results and low error with respect to the non-linear bilateral filter,
while keeping the complexity (which is proportional to L) reasonable.

In the second experiment, we compared different settings of the
proposed method on the problem of denoising a 256× 256 peppers
image. Denoising quality was measured as peak signal-to-noise-ratio
(PSNR) w.r.t. the clean image. Figure 4 shows denoising results by
the proposed approach with different settings on the peppers image
contaminated with different levels of noise.

V. EXTENSIONS AND APPLICATIONS

A. Color images

So far, we assumed I to be a grayscale image. In order to
filter color images, the proposed scheme can be straightforwardly
applied to each of the color channels individually. This increases
the complexity by the factor of 3. A fast approximation is possible
by applying the filter only to the achromatic channel of a Lab or
Y UV colospace, typically containing most information about the
edges in the image. Figure 5 shows the result of bilateral filtering on
an image contaminated by color noise in all channels. The filtering
is performed in the Y UV colorspace on each channel separately.
Different values of σr can be used for each channel depending on
the noise characteristics.

B. Dynamic range extension

In the problem of dynamic range extension, the image is de-
composed into reflectance and illumination components, Ik,j =
Rk,j · Lk,j (Lk,j ≥ Ik,j [4]), and then reassembled as Ĩk,j =

Rk,j · L1/γ
k,j = Ik,j · L1/γ−1

k,j , where the parameter γ controls the
dynamic range enhancement.
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Original image Noisy image Non-linear Durand-Dorsey Our method (K = 4, P = 5)

Fig. 2. First row: Filtering the Lena image with Gaussian synthetic noise of standard deviation 5. In all filters, σr = 10 and window of approximately
41× 41 pixels was used. In Durand-Dorsey and lazy sliding window, L = 10 was used. Second row: texture details. Third row: geometry detail.

L = 3

RMS=8.6, MAX=30.4

L = 5

RMS=3.2, MAX=17.3

L = 10

RMS=1.1, MAX=11.5

L = 20

RMS=0.4, MAX=6.1

L = 50

RMS=0.2, MAX=5

Fig. 3. Influence of the number of bands L in lazy sliding window approach on the approximation quality. Parameters K = 4, P = 5, and σr = 10 were
used. The error is w.r.t. the non-linear bilateral filter.

Elad [5] proposed estimating these components in the logarithmic
domain Ĩk,j = R̃k,j + L̃k,j = log(Rk,j) + log(Lk,j) using a pair of
bilateral filters. With this approach, L̃ is estimated by applying the
enveloped version of the bilateral filter to Ĩk,j = log(Ik,j),

L̃k,j =
1

wk,j

P∑
m=−P

P∑
n=−P

wk,j,m,nĨk−m,j−n,

where

wk,j,m,n = e
−m2+n2

2σ2
s e

−
(Ik,j−Ĩk−m,j−n)2

2σ2
r θ(Ĩk−m,j−n − Ĩk,j),

wk,j =

P∑
m=−P

P∑
n=−P

wk,j,m,n,

and θ(x) = 1 if x > 0 and zero otherwise (the step function
θ(Ĩk−m,j−n− Ĩk,j) ensures that Lk,j ≥ Ik,j due to monotonicity of

the log). R̃ is then estimated by applying the standard bilateral filter
to Ĩ − L̃. Both filter results provide the reflectance and illumination
components Rk,j = eR̃k,j and Lk,j = eL̃k,j , from which the new
image is composed (for additional details and derivations, the reader
is referred to [5]).

Our approach can be straightforwardly adapted to be used in this
problem. The enveloped version of the bilateral filter is computed as
in Algorithm 2 with two modifications. First, Step 5 has a different
nonlinearity now including the step function,

Gk
m,n = e

−
(l∆−BI

k,P
m,n)

2

2σ2
r θ(l∆−BIk,Pm,n).

Second, the mask computation in Step 8 has one-sided interpolation,
BMk,P

m,n = θ(BIi,Pm,n − l∆)θ((l + 1)∆ − BIi,Pm,n), which ensures
that the constraint Lk,j ≥ Ik,j is satisfied. Figure 6 shows an
example of dynamic range extension by means of two bilateral filters
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Noisy image

(σ = 15)

P = 1, σr = 10

PSNR=26.28 dB

P = 1, σr = 20

PSNR=28.36 dB

P = 2, σr = 30

PSNR=28.77 dB

P = 2, σr = 30

PSNR=27.64 dB

(σ = 20) PSNR=23.25 dB PSNR=25.3 dB PSNR=26.56 dB PSNR=25.67 dB

Fig. 4. Denoising using the lazy sliding window approach with different settings. K = 4, L = 20 were fixed; σr and P determining the spatial and
radiometric variance of the filter varied. Denoising quality is given by PSNR w.r.t. the original image.

implemented using the proposed method.

Noisy image Denoising result

Fig. 5. Denoising of a color image using the proposed approach with K =
4, P = 2, σr = 20, and L = 10 (best viewed in color).

VI. CONCLUSIONS

We presented an efficient implementation of the bilateral filter on
parallel SIMD-type architectures. Our implementation can be advan-
tageous in applications requiring real-time performance of filters in
large resolution images, such as high-definition video processing.
The bilateral filter can also be used for color image filtering and
for adaptive dynamic range extension.
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