
A Feedback-Enhanced Learning Approach for
Routing in WSN

Anna Egorova-Förster
University of Lugano, Switzerland

Email: anna.egorova.foerster@lu.unisi.ch

Amy Murphy
University of Lugano, Switzerland

Email: amy.murphy@unisi.ch

University of Lugano
Faculty of Informatics

Technical Report No. 2006/03
May 2006

Abstract

Much research in sensor networks focuses on optimizing traffic originating at multiple sources destined for a single, base
station sink. Our work reverses this assumption, targeting scenarios where individual sensor data is sent to multiple destinations.
In this case, the data path that produces the least network cost is unlikely to overlap completely with any of the optimal routes
between the individual pairs of source/destination nodes. If the entire topology is known, an offline approach can likely find this
minimum path. However this is an unrealistic assumption. Instead, our approach uses only local information and converges toward
optimal. The novelty of our approach is a technique for actively exploring alternate data routes, sharing feedback regarding route
fitness, and learning better routes. While non-optimal choices are made during the discovery phase, the resulting, learned path has
lower cost than the initial path. Further, our protocol identifies multiple paths with equal cost, providing additional opportunities for
saving energy by switching among alternate routes throughout the lifetime of the application. This paper describes our feedback-
based protocol, shows simulation results demonstrating its benefits and explores the future opportunities of the learning technique
presented.

I. INTRODUCTION

Technological advancements in small hardware and wireless
networking have recently raised interest in studying wireless
sensor networks. Much effort focuses on what the currently
available technology can achieve and mainly concentrates on
collecting vast amounts of sensed information at a single,
powerful base station. While a variety of applications can ex-
ploit this setup, network algorithms supporting it have limited
use when the data from the network can be exploited inside
the network, as in the case of sensor actuator networks. In
such scenarios, actuators are dispersed along side the sensors,
collect data gathered by them, and take some action. The
classic example is that of sprinkler actuators using information
from moisture sensors. While it is possible to use a centralized
approach, collecting information at a base station and re-
sending it to the actuators, this unnecessarily increases both
the amount of data transmitted in the network and the latency
between data collection and actuation.

By taking this sensor/actuator scenario as our motivation,
our work essentially reverses the typical sensor network as-
sumptions and instead of sending multiple pieces of data to a
single sink, we target sending a single piece of data to multiple
sinks. Within this context, our goal is to minimize the overall
cost to the network, thus increasing its lifetime.

Recent research efforts have resulted in a wealth of routing
protocols to discover optimal paths between data sources and
destinations, considering energy constraints, path length, etc.
While these are quite effective in reaching a single destination,
the minimal tree connecting a source and multiple sinks may
not contain any of the minimal routes between the source and
any single destination. The challenge we face therefore is to
discover this minimal tree of routes without requiring global
information about the network topology.

Our approach is an in-network protocol that incrementally
learns about better paths in the network. To achieve this,
we assume that sink nodes advertise their data needs with a
simple broadcast protocol, and that basic routing information
is collected during propagation of this broadcast message.
This yields initial information about possible paths for data
to the sink nodes, however, as noted previously, these may
not be the best paths for reaching all sinks. To find these
better paths, neighbors exchange information about the fitness
of the selected route. Application of this fitness information
allows incremental improvement to the routes, decreasing the
overall network cost for the data to reach all sinks. During this
process, each node actually learns multiple, equal cost routes.
By cycling through these routes, we are able to increase the
lifetime of the network, essentially by spreading out the load
on the nodes involved in the routing process.

This paper continues in Section II with an overview of our
routing protocol then Section III presents the details. Sec-
tion IV provides a discussion and simulation results demon-
strating the effectiveness of our approach. We then outline
related work before Section VI concludes the paper with our
plans for future work.

sink
sink

source

sink

sink

sink

optimal
shared
route

Fig. 1. A sample network with 5 sinks and one source. The lowest cost
shared route is a tree, rooted at the source and spanning all sinks.

II. OVERVIEW

The goal of our protocol is to find the shortest possible
path for data to follow from its source to all interested sinks.
One possible path is formed by the union of the individual
paths from the source to each sink, however a shorter path
often exists. This shorter path takes the form of a tree, as
shown in Figure 1. While the discovered tree may not be the
theoretical optimum, it is likely to be an improvement over
the individual paths. The challenge is to globally identify this
tree without full topology information and without exchanging
global information. The main task of our protocol is to update
local information regarding “next-hops” to reach sinks from
each node such that the resulting tree is as small as possible.

We accomplish this with a three phase protocol. The first
establishes basic information at each node regarding the iden-
tity of the sinks and initial path information to each sink.
The second phase sends data, explores routes, and learns the
accurate shared costs of these routes. The third phase is steady-
state, in which packets are routed along the best available
routes without exploration. The sequence of phases is not
strict, meaning that if a new sink requests data, or if a new,
shorter path is introduced, the system will asynchronously
return to the first and/or second phases.

The first phase requires each sink to broadcast a packet
announcing its intent to receive data of a certain type. As this
packet propagates, nodes receive information about the cost
along available paths to the sink nodes.

The second phase begins when a data source starts sending
packets. To decide which neighboring nodes to forward a
packet to, each node constructs and consults what we refer to
as a Path Sharing Tree (PST), explained in detail in Section III-
B.2. Essentially the PST shows the estimated cost of sending
the packet to all sinks through different next hops. For each
data packet, the node selects a set of next hops to reach the
sinks. By selecting a different next hop each time a new data
packet arrives, the space of routes is explored. The node also
calculates a feedback value indicating how good this node was
as a choice for routing. This value is processed by the node
that sent the data to the current node and is used to update the

TABLE I
DATA REQUEST AND DATA PACKET FORMATS.

DATA REQUEST
sinkID [int] A
time stamp [sec] 78
coordinates [x, y, r] [100, 45, 8]
expire after [sec] 1000
TTL [int] 10
hops [int] 1

DATA PACKET
Info:
data ...
sourceID [int] 20
time stamp [sec] 78
Feedback:
forID 34
RLE [int] 12
Routing:
neighborID 45

sinks(array) (B, C)
max cost 4

neighborID 12
sinks[array] (A, D)
max cost 9

PST, allowing nodes to learn the real costs of different paths
to the sinks.

After some time, no new information is being learned and
it is no longer worth while to explore potential paths. At this
point, the nodes switch into the third phase, using only the
best routes found during the exploration phase. To balance
the costs among all the nodes in the network, a node uses all
paths of equal cost, thus increasing the lifetime of the network.

It is worth noting that our routing protocol tolerates both
node failure and loss of data and feedback packets. Also, while
the protocol does not prevent routing loops during the explo-
ration phase, it still ensures that the packet eventually reaches
the destination, unless it is corrupted during transmission.

III. APPROACH

To explain the details of our approach, we step through the
phases of the protocol outlined in the previous section.

A. Phase I - Sink announcement

The first phase of our protocol requires each sink node that
desires to receive data of a particular type to broadcast its
request to the entire network. The request message itself is
fairly straightforward and it is outlined in Table I. The most
important information it contains are the identifier of the sink
node and the time to live (TTL) for the packet, indicating the
limit of the dissemination of the request message. Also, the
hops entry, initialized to 1 at the sink, increments each time
the request is forwarded.

When a node receives a request message, it consults its
routing table, shown in Figure 2 for the arbitrary node with
identifier 20. If an entry already exists in the table for this
sink/neighbor combination with a smaller number of hops
traveled, the message is not processed. Otherwise, if no entry
exists or the hops entry in the table is greater, the table
is updated and the packet forwarded in broadcast with a
decreased TTL and an increased hop count. This forwarding
process creates the routing tables on all nodes, each containing
several options for paths to each sink.

B. Phase II - Exploration
Phase II represents the core of our protocol. It is during

this phase that the best possible route from the source to all
sinks is discovered. The key points to our approach are the
function that estimates the effectiveness of the route, the fitness
function, the data structures used to make routing decisions for
data packets, and the exploration strategies determining which
routing decisions are taken.

Before getting into the details, it is important to note that
all packets are sent in one-hop broadcast mode, not unicast,
to all neighbors. Therefore, if a packet should be sent to two
neighbors, e.g., to nodes 45 and 12, a single packet is sent with
information inside specifying which nodes should process it. In
Table I, this information appears in the Routing section of the
data packet. Due to the natural broadcast nature of wireless
communication, this clearly reduces the costs when sending
the same data to two or more neighbors.

Phase II initiates when a data packet is received at a node
and it must make a decision concerning how to route that
packet. Each data packet carries information concerning which
sinks it is expected to reach by going through this node. For
example, in Table I, the data packet must reach sinks (B,C)
by going through node 45 and sinks (A,D) through node 12.

1) Fitness Function (Route Length Estimate): Given that
the goal of our protocol is to find the best possible route to
all sink nodes, we must define precisely the metric for evalu-
ating routes. By studying the environment, several properties
emerge. For example, remaining battery power at the nodes
can affect the quality of the path. If any node has low power,
paths including it should be less favorable than alternatives.
Similarly, if a path includes a low quality link or a link near
the bandwidth limit, it should be less desirable. In general, the
fitness function can be calculated based on multiple variables
related to the appropriateness of the path for routing packets
to a particular sink or set of sinks.

For this paper we use a simple, intuitive fitness function:
Route Length Estimate (RLE). This metric is the total number
of hops that a message is expected to travel to reach all sinks
and generally corresponds to the overall energy requirements
for routing the packet through the network. In the rest of the
paper we assume this fitness function is used, however other
metrics such as path energy and quality could be easily folded
into our approach by changing the fitness function.

After Phase I, all nodes know locally the cost to send to a
given sink through a given node. Based on this information,
we can estimate at any node the cost to send a packet to a set
of sink nodes through some of its neighbors. However, because
the topology is not known, this cost is only an approximation,
hence the word estimate in our fitness function metric. Using
Figure 2 as an example, it is known that from node 20,
neighbor node 45 can be used to reach sinks (A,B,C) but
it is not known whether node 45 has an outgoing shared link
to use for these packets, or if it must split the packets to three
different neighbors to reach all of the sinks. Therefore, we
estimate the worst case remaining cost to send a packet to sinks
(A,B,C) through node 45 as the cost to send the packet one

Neighbor ID Route to # Hops

Sink ID

45 A 1

B 3

C 2

54 B 2

12 A 6

D 4

Fig. 2. Routing information maintained by sensor node 20 with path lengths
to all known sinks obtained in Phase I.

shared hop to node 45 and then to split the packet along three
different paths after node 45 for the remainder of its route to
the sinks. Therefore the cost is 1+(1−1)+(3−1)+(2−1) = 4.
This equation is generalized as:

RLE =

(∑
i

cost i

)
− (n− 1) (1)

where i is the set of sinks ((A,B,C) for this example), cost i

is the path length to send a packet through the given neighbor
(1, 3, and 2 above) and n is the number of sinks (3 above).

It is important to emphasize that this is the worst case
estimate for the fitness of the path to sinks (A,B,C) through
node 45. It is entirely possible that the packet can continue to
share a path after node 45 for at least two of its sinks, in which
case the actual cost will be lower. To learn a more accurate
estimate of the cost, the estimates for the same routes on
other nodes are conveyed back to the node where the original
estimate was made, from nodes 45 and 12 to node 20 in this
case. This is done as feedback during the routing process, as
described in Section III-B.4.

2) Path Sharing Tree: When a node receives a data packet,
it must ensure that the data will reach all of the sinks listed
inside the data packet by delegating responsibility for routing
the data to one or more of its neighbors. If a packet contains
only a single sink destination, the routing decision can be taken
only by looking at Figure 2, and selecting the entry with the
shortest path to that sink.

However, if the data must reach several sinks, the decision
is quite complex. Consider example node 20 in Figure 2. If
a data packet must reach all four sinks we have at least the
following distinct options: (i) 45 for (A,B,C), 12 for (D), (ii)

12 for (A,D), 45 for (B,C), or (iii) 45 for (A,C), 54 for (B),
12 for (D). This is not a complete enumeration of the options,
but it gives the reader an impression of the complexity of how
many options are available.

To manage this complexity, we devised a data structure
called the Path Sharing Tree (PST) whose goal is to organize
the available options for selecting the next hops for a data
packet to take, making the path selection task manageable.

Figure 3 shows a sample PST, based on the routing infor-
mation in Figure 2. In the PST, a single path from the root
to any leaf indicates which nodes should be used to send data

root

A,B
3

n 45

A,C
2

n 45

B,C
4

n 45

A,D
9

n 12

A,B,C
4

n 45

A,D
9

n12

TCost
12

C
2

D
4

B
2

B
2

D
4

D
4

C
2

n 54

n 45

n 54

n 12

n 12

n 12

n 45

TCost
7

TCost
7

TCost
6

TCost
11

sinks
RLE

sink
best TCost

C
2

D
4

n 12

TCost
6

B
2

A
1

n 45

n 54

n 45

Legend

Fig. 3. The initial path sharing tree (PST) for the neighbors of node 20,
constructed with information from Figure 2. A path from the root to a leaf
represents a single routing option to reach all sinks from node 20 with the
cost indicated on the leaf. Shaded nodes identify sharing of the next hop.

to which sinks. Two sinks in the same shaded oval indicate a
shared link to the next hop. For example, the leftmost path of
Figure 3 indicates that data should be destined to node 45 for
sinks (B,C), and to node 12 for sinks (A,D). The leaf node
shows the current route length estimate for this option is 12
according to Figure 2 and Equation 1.

The PST has two main parts, the top one contains only
shared paths (shaded PST nodes), and the bottom one contains
any sinks that do not occur in the shaded nodes above it
(non-shaded PST nodes). For example, after the shaded node
(A,B,C) on level one of the PST, there is no possibility to
share any paths for the remaining sink (D). Therefore, the tree
continues with a non-shaded node covering the remaining sink
individually. The RLE for all non-shared nodes is the shortest
path to that sink in Figure 2.

The tree is constructed in a brute force manner, with some
optimization shown later. The root of the tree has no special
meaning, it is simply a starting point for the enumeration of
routing options. The first row includes all combinations of
two or more sinks sharing the same next hop. The second row
chooses among the remaining combinations of sinks that do
not overlap with the previously covered sinks and do not use
same next hop. Although not demonstrated in this simple PST,
any node can have more than one child. The subsequent rows
in the PST follow the same rules, containing combinations of
sinks not already covered and using next hops not already
used. After all combinations are exhausted, the remaining
sinks are covered individually as previously described.

The total cost indicated on the leaf is the cost to use the
path formed by the nodes from the root to this leaf node. It
is analogous to Equation 1, namely the sum of the individual
RLEs of all nodes on this path, minus the number of PST
nodes on the path, minus one because the first hop is broadcast
and therefore shared.

This total cost represents the estimated cost for sending
a packet to all sinks, however it is possible that a packet
arrives and must only be forwarded to a subset of the sinks.
Fortunately, the information required to analyze the forwarding
options is already contained in the PST. This is best described

by example: consider a packet that must be routed only to
sinks (A,B, C). In this case, any shared paths that include
the other paths, namely (D), should not be considered. To
do this with the same PST, we eliminate from the first row
any nodes that contain (D). Therefore we consider the first
four nodes on the first level, ignoring (or rather, virtually
pruning) the last shared node, (A,D). If a shaded node not
containing (D) is encountered further down in the PST, the
branch containing it is pruned. On the other hand, if a non-
shaded (D) is encountered, it is simply ignored, not pruned.
This is correct because the non-shaded nodes in the PST
appear in no particular order, therefore we can consider (D)
as the last node without affecting correctness. Finally, the total
cost for the possible paths must be adjusted to ignore the (D)
nodes. This is trivially accomplished by subtracting the cost of
(D) from the total cost on the leaf node and adding 1 because
one node has been removed from the PST path. Analogously,
the same PST can be used to route to any subset of the known
sinks by only adjusting the total cost relevant to the subset.

The size of the PST is related to the number of sink nodes
and the number of neighbors with routes to those sinks. Given
the assumption that the number of sink nodes is not large,
the size of the tree is quite manageable. Further, although
we have described this as a verbose tree data structure, the
structure itself can be greatly compressed for use on resource
constrained sensor devices, e.g., by using two bit vectors to
represent the sinks and next hops, and storing the tree as a
table, eliminating the storage of tree pointers. Additionally,
the tree can be pruned to remove duplicate paths and to ignore
paths with high estimated costs. These and other options are
further explored in Section IV-A.

3) Managing Loops: While the PST presents several op-
tions for the routing of the packet to a set of sinks, it does not
recognize if the selected route will contain loops. Therefore,
we address this separately and deal it when it arises.

Usually, it is sufficient to know the number of hops that the
previous node expected this node to use when routing, and to
select a path with lower cost. For example, the node of the
PST tree shown in Figure 3 received a request to route to sinks
(A,B,C, D), this request also includes the maximum allowed
cost for forwarding the packet, max cost. If this value is 8, the
node must eliminate the two possible routing options with cost
higher than 7, the maximum allowed cost minus one because
one hop was already taken to reach node 20. As long as the
max cost decreases with each hop, the data is guaranteed to
eventually reach the sink.

In most cases, a node will be able to locate a path in its PST
with an acceptable cost. If not, the packet is returned to the
sender, who must choose a different path to reach the sink(s).

It is possible that a packet will travel in a loop while a
large cost path is being explored during Phase II. However,
paths containing loops will not be used after the exploration
phase ends because if a path with a loop exists, the PST also
contains a path without the loop. The cost without the loop
must be smaller than the one with the loop, and therefore the
loop-free path will be used after the exploration stage ends.

forwarder
n45

sender
n20

broadcast
n12

n2

n3

forward
data

forward
data

n5

DATA
sourceID = 20
time_stamp=100

Feedback
id =
RLE =
Routing
neighbor: 45
 sinks: B,C
 max_cost: 4
neighbor: 12
 sinks: A,D
 max_cost: 9

DATA PACKET

not for
me

forwarder
n45

sender
n20

broadcast

n1

n2

n3

feedback
for me

n5

DATA
sourceID = 20
time_stamp=100

Feedback
id = 20
RLE = 2
Routing
neighbor: 5
 sinks: B,C
 max_cost: 2

DATA PACKET
forward

data

Fig. 4. A demonstration of the routing and feedback mechanism between
two nodes. One hop broadcast is used to send and while every node receives
the packet, it processes it only if its identifier appears in the routing section
of the packet.

4) Feedback and Learning: While the PST is able to
estimate the network cost to all sinks, its initial data is based
only on information gathered during Phase I and is therefore
the worst-case estimate of the possible sharing, assuming that
the packets to different sinks will follow different paths after
reaching the next hop. As this is clearly not always the case,
it is necessary for any downstream nodes to provide updated
route costs to the upstream nodes, providing more accurate
route length estimates. This information is shared in the form
of feedback, returned to the upstream node when the packet is
re-broadcast by the next hop. The sending and receiving of the
feedback information and the updating of the RLEs throughout
the network is our actual learning mechanism that results in
improved routing decisions over time.

Consider the example shown in the left of Figure 4 in which
sender node 20 forwards a packet to nodes 45 and 12 for
sinks (B,C) and (A,D) respectively. Note that the packet
includes the max cost mentioned in the previous section. When
node 45 receives this packet, it must find a path for routing
to sinks (B,C) with cost less than 4. It identifies another
neighbor, 5, as an appropriate next hop for both sinks (B,C),
and recognizes that the cost for this path, 2, is less than
the maximum allowed by sender node 20. This implies that
node 20 has too high an estimate for the route through node
45. Node 45 sets feedback information in the packet that it
forwards, indicating that node 20 should update its route length
estimate to 2, the current estimate of the path known at node
45. When node 20 receives this feedback, it updates the PST
tree, setting the individual cost for using node 45 as the next
hop for (B,C) to the feedback value and updating the total
costs for paths using this routing option.

In general, feedback information updates information at the
previous hop, however in order to find the overall best routes,
this information must propagate throughout the network; our
mechanism does precisely this. Observe that with the new
path information, node 20 now has a better cost estimate that
will affect its perception of the route fitness: it has learned a
new RLE for this route. Therefore, the next time node 20 is

requested to send data along this same route, it will forward
the updated cost estimate from its PST to its predecessor node.
Thus, the information eventually propagates the full reverse
path from the sinks to the data senders. This means that for a
route to some sink with n hops, the same route must be used
exactly (n− 1) times in order for all nodes on the path from
the source to the sink to have the most accurate information.

5) Exploration Strategies: While the PST information
shows several possible routes and combinations, it is the job
of the routing protocol to decide which route to use. Clearly
several options are available. We could simply choose a single
path with the minimum cost. For example the PST of Figure 3
indicates that sharing node 45 for sinks (A,C) and using other
nodes for (B) and (D) has a cost of 6, lower than all other
options. However, it may be that this is a poor estimate, and
one of the other options has lower actual cost.

Another option is to cycle among all options, trying them
all, and receiving feedback from the other nodes to update the
RLE. Yet a third option is to assign weights to the options. For
example, assigning larger weights to paths with low cost. With
these weights, we can then probabilistically select a path to
use, selecting low cost path with higher probability. As with
round-robin, nodes are expected to send feedback, updating
route estimates. The expectation, however, is that paths with
low initial estimates will also have low actual cost, therefore
it is beneficial to select these paths to explore before trying a
path with very high cost.

Other route exploration strategies are possible, with the
choice depending on application requirements and network
properties. The exploration strategy works together with the
loop management and ensures that only allowed routes are
chosen for exploration. A route is allowed as long as it is
strictly less than the max cost contained in the data packet.

Finally, every exploration strategy must define the duration
of the exploration phase. Again, several options are available
based on time, on the received feedback, on the number of
explored routes, etc. In our implementation, the exploration
phase ends after a given number of packets do not trigger an
update to the PST. With a constant data rate, this is equivalent
to a time-based approach, however it is more flexible for
varying data rate applications.

C. Phase III - Stable Data Gathering

According to the selected exploration strategy, eventually
the protocol will stop exploring new paths and will work with
the information collected thus far. When this happens, the PST
is likely to have several routes with the same minimal cost.
These are considered the best routes available, and therefore
should be used during the stable data processing phase to route
all remaining data packets.

The fundamental choice, however, is whether to use one
or more of these available routes. As the costs are equal,
we observe that alternating among the available paths is
likely to spread out the load of data forwarding among the
available network nodes. Therefore Phase III is characterized

by randomly selecting one of the best paths and sending the
data packet along it.

It should be noted that if the PST changes for any reason,
Phase II is re-initiated. Therefore, the protocol may exit the
stable phase, but assuming the PST eventually stops changing,
the system will spend most of its time in Phase III.

IV. DISCUSSION AND EVALUATION

In this section, we discuss the overall properties of the al-
gorithm, then present our simulation environment and results.

Throughout this section, we examine the behavior of
our protocol with two different exploration strategies: RAN-
DOMEXPLORE and NOEXPLORE. RANDOMEXPLORE assigns
probabilities to each leaf in the PST according to its total cost,
then selects allowed routes for exploration with these proba-
bilities. It stops exploring, when ten consecutive data packets
receive no valuable feedback for the PST. NOEXPLORE uses
only the best found routes in the PST after Phase I, meaning
no exploration is ever performed.

As a baseline for comparison we use an implementation of
Directed Diffusion’s “one phase pull” protocol, DIRECTED-
DIFFUSION, as described in [1], [2]. We selected this protocol
as it is both similar to our approach and has demonstrated
good experimental results.

A. Discussion

The feedback-enhanced routing protocol presented thus
far is based on a non-deterministic, probabilistic learning
approach. As discussed in Section III-B, it guarantees data
packets eventually reach the sinks in all phases, however, it
does not guarantee to find the optimal route.

To always find the optimal route in the network, we would
need to implement a blind search through all possible routes
and guarantee that the feedback from all routes completely
propagated throughout the network. These suffer from a single
disadvantage: they require time. For this reason, we apply a
standard machine learning technique: randomize and limit the
exploration to all heuristically good routes. This is manifest
in the assignment of probabilities to routes in the PST during
exploration such that the paths with low current cost estimates
are likely to be explored and thus to receive feedback.

The success of the exploration phase is dependent on the
topology of the network. With some topologies, the optimal
route to all sinks is the same as the individual routes to each
sink separately, which is the information in the routing table
created in Phase I. We refer to this routing option as best single
routes to sinks. If these routes are optimal, the exploration
phase will not find any better options. Nevertheless, in other
cases, benefits in network cost will be found in the exploration
phase. Figure 5 shows several small networks with similar
topologies illustrating both scenarios where exploration can
provide benefits and those where it will not.

Figure 5(a) shows that the network costs when using best
single routes to sinks will be 5, considering one-hop broadcast
for all packets outgoing from a given node. If we consider

sink sink

source

DD = 5
1-phase = 3
2-phase = 3

(a) Case 1

sink

sink

source

DD = 3
1-phase = 2
2-phase = 2

(b) Case 2

sink sink

source

DD = 5
1-phase = 5
2-phase = 4

(c) Case 3

sink sink

source

DD = 2
1-phase = 2
2-phase = 2

(d) Case 4

Fig. 5. Different network topologies exhibit different properties of the routing protocol. The gradients for DIRECTEDDIFFUSION and the feedback-enhanced
route are given. The RLE values are for DIRECTEDDIFFUSION (DD), RANDOMEXPLORE (after stabilization), and NOEXPLORE.

shared routes, both RANDOMEXPLORE and NOEXPLORE re-
sult in the same route through the middle nodes in the network
with the cost of 3, a savings of 40% over the best single routes.

Figure 5(b) shows a similar situation with 50% gain for
both RANDOMEXPLORE and NOEXPLORE, however the figure
emphasizes another property of the network: by good luck the
best single paths established in Phase I may overlap with the
best shared route in the network, as their costs are the same.
In this case, the exploration cannot discover any better routes.

Figure 5(c) shows a topology where the exploration phase
of RANDOMEXPLORE finds a better route than NOEXPLORE.
At initialization, after Phase I, the shared route through the
middle nodes in the network will have costs of 7: the known
costs to both sinks is 4, thus the first RLE for this route is
(4 + 4) − 1 = 7. The routes through the left and right nodes
will also have initial RLEs of 7. Thus, the stable phase will
choose one of these routes nondeterministically. If the middle
one is chosen, the best route will be found by chance. If not,
the network cost will stabilize to 5, which is the same as the
costs for the best single routes, but not the overall optimal.

The topology in Figure 5(c) illustrates another property
of our exploration mechanism: it is not guaranteed to find
the optimal route. Because we choose randomly among the
available routes during exploration, it may happen that the
middle route is not explored before the end of the exploration
phase. In this case, the optimal route will never be found.
This depends on the exploration strategy as it defines the
order and how often certain routes are explored, as well as
the phase duration. Therefore, there is a small probability that
RANDOMEXPLORE will stabilize to less optimal routes than
NOEXPLORE optimization.

Figure 5(d) shows the final case where neither RANDOM-
EXPLORE nor NOEXPLORE can find a better route because
the best single routes already use the optimal one. In a real
network, with longer paths to the sinks, such a situation is
unlikely to occur.

This analysis raises the question whether the exploration
phase is needed since, as just demonstrated, it does not
necessarily find better routes. The answer is yes for two

reasons. First, most of the time we do find routes with
better fitness through exploration (see the simulation results
in the next section). Second, the exploration phase exhibits
an auxiliary property, namely it finds many routes with the
same minimum cost. This can be used for actively managing
network lifetime by alternating among routes and sharing
energy among forwarding nodes. We return to this property
in the simulation results section.

a) Extreme scenarios: It is worth abstractly considering
some extreme scenarios including both very few and very
many sinks. With only one sink, the PST tree will not be
built at all because there are no shared routes and the best
route to this sink from the routing table will be directly used.
In this extreme scenario of one sink, the results will be exactly
the same as using DIRECTEDDIFFUSION.

With the other extreme, a large number of sinks, several
properties in the routing protocol change. First, the exploration
time increases because more shared routes are possible through
a single neighbor. Second, the network cost savings also
increase for the same reason. On the negative side, the size of
the PST also increases in order to track all possible paths.

Even in the moderate cases with a small number of sinks,
we must apply some heuristics to the PST tree to manage its
size. As discussed in Section III-B.2, one option is to save
only routes to some particular sink whose costs are near the
minimal single paths costs. Another possibility is to keep the
routes, but after building the tree, prune it only to some number
of leafs with near-minimal costs. In this case, more memory
is needed to keep the routes, but the PST is more flexible
to changes in the network (new requests, expiration of old
requests, changing connectivity, mobile nodes, etc.) and more
efficient when identifying good shared routes as it constructs
the whole tree before pruning it to the best routes found.

b) Multiple sources and data types: To this point we
have only considered a single source in the network. However,
when the number of sources changes, neither the protocol
nor the properties of the exploration change. Although more
packets will be routed through the network, the feedback
relates to the sinks and not the sources, therefore it remains

unchanged. Moreover, the algorithm is likely to converge
faster, as feedback is exchanged more frequently due to the
higher data rate. Still, only one PST is needed per node and
this PST holds all possible routes.

Also, when multiple data types (predicates over the sensor
data) are requested, the PST remains the same because, as
previously mentioned it contains only information relevant to
the sinks, not the data. Nevertheless, building separate, smaller
PSTs for each predicate may be considered as an optimization
for managing the size of the PST.

c) Repair after failure: Our protocol is also tolerant to
connection failures. If some neighbor is no longer reachable,
all corresponding routes are deleted from the PST of the node
that discovered the failure and the next best routes can be
used. If the cost of the new route is larger than before, this
information is passed as feedback to the neighbors, updating
their PSTs, triggering a new exploration phase, and causing
new routes to be explored and used.

In the case we have several routes with the same minimal
costs, which is often the case, the network costs stay the same
even after node failures. Such an option is not possible when
only one next hop or gradient is kept for each sink. Thus, our
approach immediately repairs the routes after failures without
the need to resend requests.

d) Bandwidth requirements: Finally, we consider the
bandwidth requirements of our feedback-enhanced protocol.
We have already shown that the protocol does not increase
network costs in the stable phase since feedback information is
piggybacked on normal data packets. In the exploration phase,
the network costs are higher because of the exploration of non-
optimal routes, but these temporary increases are compensated
for in the stable phase, as seen in the simulation results.

B. Simulation setup and results

Our simulation study was conducted using the OMNeT++
discrete event simulator [3], version 3.2 with the Mobility
Framework extension1. Both our experimental results as well
as the simulation code are available on our website2.

The key component of our simulation is the implementation
of our routing protocol. The remainder of the environment
settings are options within the Mobility Framework such as
a dummy application layer for receiving the data, a simple
CSMA MAC layer, and a simple wireless medium simulation
at the physical layer. This physical layer uses a single param-
eter for managing bit errors and medium interference. Details
are available with the Mobility Framework documentation.
Admittedly, this simulation environment is not completely
satisfactory, mostly due to the overly simplified physical layer
simulation and the selection of MAC protocols, both of which
are non-typical for wireless sensor networks. Nevertheless, the
simulation is more than sufficient to provide a meaningful first
evaluation of our ideas. In the future, we plan not only to work
with a more satisfactory simulation environment, but to also
implement the protocol on real sensor nodes.

1http://mobility-fw.sourceforge.net/
2http://www.inf.unisi.ch/projects/mics

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

simulation time [sec]

ne
tw

or
k

co
st

 o
f d

at
a

pa
ck

et
 s

en
t [

RL
E]

231

exploration phase

stable phase

average overall cost = 6.61

average stable cost = 4

Fig. 6. The network routing costs for data from a single source to all sinks in a
sample, random topology with 6 sinks. The two phases of RANDOMEXPLORE
are shown: exploration until time 231 followed by stable.

As previously mentioned, our evaluation compares two
versions of our feedback-enhanced protocols NOEXPLORE
and RANDOMEXPLORE against an implementation of the “one
phase pull” DIRECTEDDIFFUSION.

All of the experiments reported here consist of 500 runs over
125 different random topologies of 50 nodes. Each topology
is guaranteed to be connected and is fixed at the beginning of
the simulation. To simulate the lifetime of a node, we assign
each node an initial energy quota and decrement this value
only when sending a packet. We choose not to decrement this
value on receiving a packet because receiving costs are likely
to be uniform for all nodes in the network. Even though a
node may not need to process a packet, it must be received to
make this determination.

In this section we report results for overall network costs and
network lifetime, showing the improvements of our protocols
over DIRECTEDDIFFUSION. We also report the convergence
time for the exploration phase of the protocol to give an idea
for the amount of time the system is spending exploring non-
optimal routes before stabilization.

Before showing any comparisons, we intuitively show the
behavior of the protocol as it progresses through the explo-
ration and stable phases. Figure 6 shows a single run for
a single topology. Before stabilizing, the network costs are
irregular because packets are sent through different routes
with varying costs. Once the stabilization phase begins, only
the best routes are used and the network cost is considered
minimal.

Based on these observations, we define two metrics used for
comparison: overall cost and stable cost. The first denotes the
average network cost during the whole run (both phases), 6.61
in this case. The stable cost averages only the cost during the
stable phase, 4 in this case. While clearly the additional costs
during the exploration phase are important as they are part of
the total energy expended by the system, this value becomes
less relevant with long simulation runs. The second metric,
on the other hand, shows clearly the gains that our approach
can achieve once the small, shared routes are identified. Our
comparison results show both values, but it is important to

1 2 3 4 5 6
!5

0

5

10

15

20

25

30

35

40

Number of sinks

Pe
rc

en
t g

ai
n

of
 n

et
w

or
k

co
st

 o
ve

r D
D

 [%
]

average percent gain over DD
average percent gain over DD after stabilizing
percent gain no explore over DD

Fig. 7. Percent gain over DIRECTEDDIFFUSION in network costs for RAN-
DOMEXPLORE after stabilizing, RANDOMEXPLORE total and NOEXPLORE.

realize that the first, overall cost, is highly dependent on the
length of the simulation run.

Our initial hypothesis for this work is that by sharing
routes to multiple sinks, lower overall network costs can be
discovered, and that our feedback-based approach will be able
to find such shared paths. This hypothesis is validated by
Figure 7 where we report the improvements of our protocols
compared to DIRECTEDDIFFUSION, reporting the percentage
difference in performance on the same topology for each
protocol. We use this metric, because it eliminates differences
among random topologies, such as the length of the paths
between source and sinks which can differ dramatically.

Overall, the stable cost of our protocol achieves significant
gains, up to 35% for 5 sinks. This graph also shows that
much of the gain comes simply by exploiting the PST to
find shared routes but in most cases, additional gains are
achieved by the exploration. However, when including the
costs incurred during exploration, the overall cost, our gains
are not as significant over DIRECTEDDIFFUSION. In fact, the
last data point for the overall cost with 6 sinks is below that
of DIRECTEDDIFFUSION. As previously explained, the overall
cost value depends heavily on the length of the simulation run
and over time these additional costs are amortized by the gains
achieved with shorter routes discovered during exploration.

Another interesting observation from this plot is at the point
for two sinks. In this case, the RANDOMEXPLORE is unlikely
to find a better route than NOEXPLORE because of the limited
number of alternate routes that exist and thus can be explored.
As the number of sinks increases and the number of available
routes correspondingly increases, the potential improvements
due to exploration grow. Also the slight decrease in the trend
at the last data point is most likely due to the random behavior
of our protocol and noise in the network. We do not expect
the downward trend to continue for more sinks.

The data shown in Figure 7 is the average gain of the
compared protocols (e.g. NOEXPLORE and DIRECTEDDIFFU-
SION), which gives the percentage difference between the per-
formance of the two protocols on the same random topology.

Next we consider the potential gains in network lifetime by
exploiting multiple identical cost links. Again our hypothesis
holds: namely that exploration finds more equal cost links

1 2 3 4 5 6
0

50

100

150

200

250

300

Number of sinks in the network

Pe
rc

en
t g

ai
n

of
 n

et
w

or
k

lif
et

im
e

explore over no!explore
explore over best single

up to 53%

up to 283%

Fig. 8. Network lifetime of our protocols compared to DIRECTEDDIFFUSION.

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

Number of sinks

Ti
m

e
to

 s
ta

bi
liz

e
[s

ec
]

Fig. 9. Duration of the exploration phase for RANDOMEXPLORE.

and by alternating among these links the network lifetime
increases, as measured by the time to the first node failure. Fig-
ure 8 shows that when comparing the stable phase after RAN-
DOMEXPLORE against DIRECTEDDIFFUSION, our approach
can achieve up to 283% longer lifetime than DIRECTEDDIF-
FUSION for the maximum number of sinks in the network.
Compared to NOEXPLORE, our approach still achieves up to
53% improvement, demonstrating that indeed the exploration
finds more route options and clearly demonstrating that our
learning approach can achieve significant benefits.

Finally, because the overall cost is affected by the length
of time that it takes the protocol to stabilize, it is worth
showing the average time to stabilization for various numbers
of sink nodes. Figure 9 shows that as the number of sinks
increases, so does the time to stabilization as it takes more
time to receive all the feedback. Nonetheless, considering that
many real applications gather data for weeks or months, an
exploration phase of a few hundred seconds is acceptable.

In addition to the plots shown here, we also ran our simula-
tions with more dense topologies, increasing the connectivity
among the nodes. Such an increase implies two trends: first,
the routes to the sinks are shorter reducing the exploration
phase, and second, there are more neighbors and the number
of routes available to explore increases. As confirmed by
simulations, these two changes compensate for one another,
yielding no measurable difference for any experiments. Plots
are not shown due to space considerations.

Additionally, we gathered information about the data deliv-
ery rates at the sinks, for setups with 1 to 6 sinks. We achieved

results varying from 97% to 99%, which we expected since
the data rate in the network is relatively low (once per second).
With increasing data rates, we expect it to decrease.

V. RELATED WORK

In this section, we compare our approach with the most
relevant work from other areas, namely content based routing
in sensor networks and the application of learning and feed-
back in the networking domain. This is not intended to be an
exhaustive survey, but simply to put our work in context.

A. Content-Based Networking in WSN

One way to view our approach is as an implementation of
content-based networking [4], a routing framework where data
is sent from the source to the destinations based on interests
expressed by the destinations to receive a particular pattern
of data. Such an approach is relevant for sensor networks
as it is data driven as opposed to address driven. This has
been demonstrated in [5] where the authors use a distance
vector protocol to construct a tree from the source node to
all interested sinks. The tree uses the minimum path lengths
for tree construction, however, unlike our approach it does not
optimize the tree to consider path sharing.

Another instantiation of content-based networking for sen-
sor networks is Directed diffusion [1], [2] where routes from
the source to the destinations are established on-demand based
on interests that are flooded through the network. This flooding
establishes gradients for data to follow from multiple sources
to the sinks. As the source sends low-rate data samples, the
routes where data first arrives are reinforced by the sinks. In
the extreme case of only one sink, our approach is actually an
implementation of Directed diffusion, however it is intended
for multi-sink scenarios, in particular identifying shared routes
to these sinks. Our most significant deviation from the Directed
diffusion work is our explicit exploration and learning mecha-
nisms, allowing us to learn the parameters of the network with
limited local exchange of information.

Additionally, while the Directed diffusion paradigm sup-
ports multiple sinks, the routes for all sink are established
separately with no optimization for shared routes. While the
option of using a multicast tree has been discussed in [2], this
assumes the network is IP-based and the multicast tree is built
with external tools.

To the best of our knowledge, no protocols exist explicitly
for content-based networking to multiple sinks in sensor
network. Related work comes, however, from the subject-
based networking work in the mobile ad hoc (MANET) do-
main, specifically MAODV [6]. MAODV builds and maintains
multicast trees for mobile environments, and while such an
approach can be applied in the sensor network domain, the
network properties and protocol requirements are significantly
different. For example, MANETs imply dynamic, highly mo-
bile environments with less stringent requirements on memory,
bandwidth, and energy than sensor network.

B. Learning Approaches in Networking

The cornerstone of our approach is its ability to learn about
better paths over time. Our approach is partially inspired by
AntHocNet [7], an approach for learning routes in wireless
ad hoc networks that combines reactive path setup with
proactive path probing. The key idea derives from ant colonies,
which are proven to converge to shortest paths when moving
from food sources to the nest by exploiting pheromones. As
applied to ad hoc networks, a route is established by sending
individual ants through all neighbors to discover a path to the
destination. All ants follow random paths, and when a path to
the destination is found, the path is reinforced. With respect
to our approach, the routing tables maintained by the ants are
similar to the combination of our routing table and the PST.
As feedback is received, their tables are updated in a similar
manner to our PST. In our case, however, the overhead of
sending ants through the whole network would be considered a
waste of energy, therefore we piggyback information on actual
data packets. Second, and more significant, our approach finds
shorter routes to multiple sinks. This would imply the cloning
of the ant to follow multiple paths, an option that would break
the analogy and change the properties of AntHocNet.

A different form of learning, namely Q-learning, has been
applied to gather data from multiple sources, compress it,
and send it to a sink node [8]. If it is possible to aggregate
data along its path, this is done to minimize energy. The
success of the aggregation depends on how early separate
data items meet each other on their way to the sink. The best
routes from the sources to the sink with respect to aggregation
are learned. Unfortunately the authors report the results only
on a rectangular grid of sensor networks and assume global
topology knowledge. Also, as compared to our solution, routes
are learned from multiple sources to one sink while our
approach learns routes from a single source to multiple sinks.
In addition, our protocol sends feedback only one hop, while
theirs propagates feedback throughout the entire path.

Another effort demonstrates the idea of using reinforcement
learning to find shortest paths in mobile ad hoc networks [9].
A continuous learning approach is used to explore all possible
routes from a source to a single sink, however the authors do
not provide sufficient information regarding the communica-
tion protocol nor how data should be exchanged. While this
work is one of the first to use Q-learning for routing, the
lack of details make comparison difficult. Our work takes the
next steps: using the learning paradigm, describing a routing
protocol, and demonstrating its benefits.

VI. CONCLUSION AND FUTURE WORK

The concept of attaching routing feedback to data packets
and learning is a powerful tool in the wireless domain,
especially sensor networks, as it requires only limited local
knowledge and achieves significant results. Furthermore, at-
taching feedback information to regular data packets does not
increase network costs, an important issue in this domain.

In this paper we presented a new concept of piggy-backing
feedback information on regular data packets exchanged in

wireless sensor networks for the purpose of incrementally
learning the properties of the network. We applied this concept
in a routing protocol that learns the best route from a single
source to multiple sinks in the network and demonstrated the
effectiveness of the protocol.

We discussed the concepts of a fitness function, which
describes the fitness of some particular route over many
possible parameters such as battery status, connection quality,
length of the route, etc. Additionally different exploration
strategies make it possible to adjust the routing protocol to
the requirements and properties of the specific application and
sensor network. Our simulation results show clearly, that even
simple assumptions and learning techniques achieve very good
results in terms of overall network cost and network lifetime
as compared to state-of-the-art routing protocols.

In the future, we plan to further experiment with different
fitness functions and exploration strategies and to implement
the routing protocol on real sensor nodes, as this is the best
mechanism to demonstrate its actual characteristics. We plan
to expand the feedback concept and to propagate the feedback
information more than the current one hop, with the goal
of reducing the learning time. We also plan to expand the
use of the feedback beyond the original sender, namely to
any interested neighbors. Again, this will make the feedback
mechanism faster and more efficient.

We will also explore the opportunities to exploit learning
in different layers of the protocol stack. For example, we
could easily learn the connection quality for asymmetric
links, where one node can communicate to some other but
the communication in the opposite direction is either poor
or impossible. By giving some simple feedback about the
local knowledge of links, every node can adjust its links. By
integrating this into the MAC layer, the result is improved
connections in the network and additional network lifetime.

Another domain, to which we plan to apply our concept,
is non-uniform data dissemination. In some scenarios, appli-
cations require accurate data from the direct neighborhood of
the sinks and less accurate from parts of the network further
away. These scenarios include many sinks in the network and
routing of data to all of them. Thus it is natural to expand our
protocol to support different levels of detail of the data and to
learn the best possible routes for sending the data to the sinks.

ACKNOWLEDGMENT

The work described in this paper is supported by the
National Competence Center in Research on Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under
grant number 5005-67322.

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” in Transactions on
Networking, 2003.

[2] F. Silva, J. Heidemann, R. Govindan, and D. Estrin, “Directed diffusion,”
in Frontiers in Distributed Sensor Networks, 2003, pp. 573–596.

[3] A. Varga, “The omnet++ discrete event simulation system,” in Pro-
ceedings of the European Simulation Multiconference. Prague, Czech
Republic: SCS – European Publishing House, June 2001, pp. 319–324.

[4] A. Carzaniga and A. L. Wolf, “Content-based networking: A new commu-
nication infrastructure,” in NSF Workshop on an Infrastructure for Mobile
and Wireless Systems, ser. Lecture Notes in Computer Science, no. 2538.
Scottsdale, Arizona: Springer-Verlag, Oct. 2001, pp. 59–68.

[5] C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf, “A content-based
networking protocol for sensor networks,” Department of Computer
Science, University of Colorado, Tech. Rep. CU-CS-979-04, Aug. 2004.

[6] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in WMCSA ’99: Proceedings of the Second IEEE Workshop
on Mobile Computer Systems and Applications. Washington, DC, USA:
IEEE Computer Society, 1999, p. 90.

[7] G. Di Caro, F. Ducatelle, and L. Gambardella, “AntHocNet: an ant-based
hybrid routing algorithm for mobile adhoc networks,” in Proceedings of
the 8th International Conference on Parallel ProblemSolving from Nature
(PPSN VIII), ser. Lecture Notes in Computer Science, X. e. a. Yao, Ed.,
vol. 3242. Birmingham, UK: Springer-Verlag, September 18-22 2004,
pp. 461–470.

[8] P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe, “Routing with
compression in wireless sensor networks: a q-learning approach,” in
Fifth European Workshop on Adaptive Agents and Multi-Agent Systems
(AAMAS 05), Paris, France, 2005.

[9] J. Boyan and M. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” January 1994.

