
High Performance State-Machine Replication

Parisa Jalili Marandi
University of Lugano

Switzerland

Marco Primi
University of Lugano

Switzerland

Fernando Pedone
University of Lugano

Switzerland

Abstract

State-machine replication is a well-established approach
to fault tolerance. The idea is to replicate a service on
multiple servers so that it remains available despite the
failure of one or more servers. From a performance per-
spective, state-machine replication has two drawbacks.
First, it introduces some overhead in service response
time, due to the requirement to totally order commands.
Second, service throughput cannot be augmented by
adding replicas to the system. We address the two is-
sues in this paper. We use speculative execution to re-
duce the response time and state partitioning to increase
the throughput of state-machine replication. We illustrate
these techniques with a highly available B-Tree service.

1 Introduction

Computer systems are usually made fault tolerant through
replication. By replicating a service on multiple servers,
clients have the guarantee that even if some replicas fail,
the service is still available. However, once a service is
replicated, consistency among the replicas must be en-
sured. State-machine replication is a well-known ap-
proach to replication. It achieves strong consistency by
regulating how client commands must be propagated to
and executed by the replicas [18, 25]. Command propaga-
tion can be decomposed into two requirements: (i) every
nonfaulty replica must receive every command and (ii) no
two replicas can disagree on the order of received and exe-
cuted commands. Moreover, command execution must be
deterministic: if two replicas execute the same sequence
of commands in the same order, they must reach the same
state and produce the same output.

State-machine replication is a technique to improve ser-
vice availability. From a performance perspective it suf-
fers from two shortcomings. First, it introduces some
overhead in the service response time when compared to
a single-copy client-server service. Second, the service
throughput is limited by the throughput of a single replica.
Thus, if demand augments (e.g., more clients join the sys-
tem) it cannot be absorbed by adding replicas to the sys-
tem. The increased response time stems from the need to
order client commands before they can be executed: or-
dering commands is inherently more costly than sending
them directly to a server, as in a client-server setup. The
throughput limitation is a consequence of each replica
storing a full copy of the service state and handling ev-
ery command. In this paper we address each one of these
issues.

To reduce the overhead in response time we rely on
speculative (or optimistic) execution, a technique that has
been used before in the context of replicated databases
(e.g., [14, 16]). The idea is to expose servers to a com-
mand before its final order has been established. As a re-
sult, the execution of the command by the server and the
execution of the protocol that orders the command can
overlap in time, saving in response time. The technique
is speculative because it only works if the order in which
commands are executed is confirmed by the ordering pro-
tocol. If not, the commands must be rolled back and re-
executed in the correct order (i.e., the order defined by
the ordering protocol). We exploit this technique in the
context of Ring Paxos, a high throughput consensus pro-
tocol used to implement state-machine replication. As we
explain in the paper, speculative execution in Ring Paxos
does not depend on network conditions (e.g., spontaneous
message order), and therefore is more advantageous than
previous proposals (e.g., [14, 16]).

1

We address the throughput limitation of state-machine
replication with a state partitioning strategy. In brief, we
allow applications to decompose their state into sub-states
and replicate each sub-state individually. Commands are
directed to and executed by the appropriate partitions
only. By partitioning the state of a service, we allow to
process commands in parallel. This is particularly effec-
tive for services whose state partitioning is perfect, that
is, all commands access one sub-state or another, but no
command accesses two or more sub-states. Commands
that access more than one sub-state must be carefully or-
dered to avoid inconsistencies. We discuss how to effi-
ciently integrate the technique into Ring Paxos.

To illustrate high performance state-machine replica-
tion, we propose, implement, and fully evaluate a highly
available parallel B-Tree service. Our service imple-
ments three B-Tree operations: inserts, deletes, and range
queries. We show that speculative execution can reduce
response time by up to 16.2%. State partitioning allows
the service to scale by adding replicas with a resulting
throughput near 4 times greater than classic state-machine
replication. In our largest configuration, up to three quar-
ters of a million B-Tree commands can be executed per
second with a response time below 4 milliseconds.

Summing up, the paper makes the following contri-
butions: (1) It shows how speculative execution can be
integrated into Ring Paxos to reduce the response time
of state-machine replication. (2) It presents the idea of
state partitioning in the context of state-machine replica-
tion. (3) It illustrates the techniques with a B-Tree service
capable of executing commands very efficiently. (4) It
discusses the implementation of these ideas and fully as-
sesses them experimentally.

The remainder of the paper is structured as follows.
Section 2 describes our system model and state-machine
replication. Sections 3 presents speculative execution and
state partitioning in detail. Section 4 illustrates the ap-
proach with a highly available parallel B-Tree service.
Section 5 evaluates the performance of the B-Tree ser-
vice. Section 6 comments on related work. Section 7
concludes the paper. A proof sketch of the correctness of
our protocols can be found in the appendix.

2 Background

2.1 System model

We assume a distributed system composed of intercon-
nected nodes within a single geographical location (e.g.,
a data center). Nodes may fail by crashing and subse-
quently recover, but do not experience arbitrary behavior
(i.e., no Byzantine failures). The network is mostly reli-
able and subject to small latencies, although load unbal-
ances (e.g., peak demand) imposed on both nodes and the
network may cause variations in processing and transmis-
sion delays. Communication can be one-to-one, through
the primitives send(p,m) and receive(m), and one-to-
many, through the primitives ip-multicast(g,m) and ip-
deliver(m), where m is a message, p is a node, and g is a
group of nodes. Messages can be lost but not corrupted.

Our protocols ensure safety under both asynchronous
and synchronous execution periods. The FLP impos-
sibility result [11] states that under asynchronous as-
sumptions consensus cannot be both safe and live. We
thus assume that the system is partially synchronous [8],
that is, it is initially asynchronous and eventually be-
comes synchronous. The time when the system be-
comes synchronous is called the Global Stabilization
Time (GST) [8], and it is unknown to the nodes. Before
GST, there are no bounds on the time it takes for mes-
sages to be transmitted and actions to be executed. Af-
ter GST, such bounds exist but are unknown. After GST
nodes are either correct or faulty. A correct node is opera-
tional “forever” and can reliably exchange messages with
other correct nodes. This assumption is only needed to
prove liveness properties about the system. In practice,
“forever” means long enough for one instance of consen-
sus to terminate.

2.2 State-machine replication

State-machine replication is a fundamental approach
to implementing a fault-tolerant service by replicating
servers and coordinating client commands among server
replicas [18, 25]. The precise way in which the technique
is implemented depends on the targeted consistency crite-
ria, which in this paper we assume to be linearizability.

An execution is linearizable if there is a way to reorder
its commands in a sequence that (i) respects the seman-

2

tics of the commands, as defined in their sequential spec-
ifications, and (ii) respects the order of non-overlapping
commands across all clients [3]. Linearizability can be
contrasted with sequential consistency, a weaker form of
consistency: An execution is sequentially consistent if
there is a way to reorder the commands in a sequence that
(i) respects their semantics, and (ii) respects the ordering
of commands issued by the same client [3].

In the execution on top of Figure 1, client C2 modifies
the state of a read-write object x and then client C1 reads
a state of x that precedes C2’s update (e.g., by accessing a
replica that has not seenC2’s changes yet). This execution
is not linearizable but it is sequentially consistent. The
execution on the bottom of Figure 1 is both linearizable
and sequentially consistent: C1 is allowed to see a value
of x that precedes C2’s update since the two commands
overlap in time.

Sequential consistent (see Proof) but not linearizable

Read(x) Reply(10)

Write(x,20) Reply(ok)

Client C1

Client C2

Read(x) Reply(20)

time

Reordered
Sequence

(Proof)

Read(x) Reply(10)

Write(x,20) Reply(ok)

Client C1

Client C2

Read(x) Reply(20)

Sequential consistent and linearizable (see Proof)

Reordered
Sequence

(Proof)

Figure 1: Linearizabiliy vs. sequential consistency.

State-machine replication can be implemented as a se-
ries of consensus instances [19]. The i-th consensus in-
stance decides on the i-th command (or batch of com-
mands) to be executed by the servers. Consensus is de-
fined by the primitives propose(v) and decide(v), where
v is an arbitrary value, a command to be executed by the
servers. Consensus guarantees that (i) if a server decides
v then some client proposed v; (ii) no two servers decide

different values; and (iii) if one (or more) non-faulty client
proposes a value then eventually some value is decided by
all non-faulty servers.

With respect to performance, state-machine replication
suffers from two shortcomings: First, totally ordering
commands delays their execution and consequently the
response time experienced by the clients, when compared
to a non-replicated client-server setup. Second, since ev-
ery replica contains a full copy of the service state and
must receive every command, limited or no performance
improvement can be expected from adding replicas to the
system. Notice that some performance improvement can
be obtained from a few optimizations. Read commands
need not be executed by all replicas: upon deciding on a
read command, only one server (e.g., randomly assigned)
must execute the command and return the results to the
client. Although all servers must execute update com-
mands, the response from only one server is sufficient for
the clients. Obviously, if the server assigned to return the
results to the client fails, the client has to retransmit its
request. Since fails are (hopefully) rare events, this is the
design we follow in this paper.

Figure 2 compares the performance of a replicated sys-
tem to a non-replicated client-server system with a work-
load composed of read-only commands only—more de-
tails about these experiments can be found in Sections 4
and 5. The graph on the left of Figure 2 shows the re-
sponse time of the two systems as the number of clients
increases. The difference between the two curves before
saturation (28 clients) indicates the overhead introduced
by replication. The graph on the right of Figure 2 shows
the throughput of the system as replicas are added. Since
the workload is composed of read operations only, repli-
cation can improve throughput up to four replicas; with
eight replicas, the overhead of simply delivering and dis-
carding read commands prevents the system from scaling
further.

To conclude, we claim that these are fundamental per-
formance limitations, not implementation specific. State-
machine replication requires commands to be ordered,
and ordering commands is inherently more expensive than
directly sending them to a server. Moreover, the fact that
all replicas must deliver all commands—although not all
commands must be executed by all replicas—limits the
attainable performance (see [15] for a similar argument).
In the next section we describe two mechanisms that ad-

3

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
tim

e
(m

se
c)

Number of clients

SMR
CS

0

2K

4K

6K

8K

10K

CS 1 2 4 8

T
hr

ou
gh

pu
t (

cm
d/

se
c)

Number of replicas

Figure 2: Client-server (CS) versus state-machine replication (SMR) executing read-only commands. (Left) Response
time versus number of clients. (Right) Throughput versus number of replicas.

dress these problems.

3 High Performance SMR
Our approach to improving the performance of state-
machine replication consists in addressing its two funda-
mental limitations: we show how to reduce the response
time and how to increase the throughput of a replicated
system. This work has been conducted in the context of
Ring Paxos, a high throughput total order broadcast pro-
tocol. In the following, we first recall Ring Paxos (Sec-
tion 3.1), and then introduce each one of our contributions
(Sections 3.2 and 3.3).

3.1 Ring Paxos outline
Ring Paxos is a variation of Paxos [19], optimized for
clustered systems. Paxos distinguishes three roles: pro-
posers, acceptors, and learners. A node can execute one
or more roles simultaneously. In a client-server setup,
clients act as proposers and servers as learners. A value
is a command proposed by a client to be executed by the
servers; the decided value is the next command to be ex-
ecuted. Each instance of Paxos proceeds in two phases:
During Phase 1, the coordinator selects a unique round
number c-rnd and asks a quorum Qa (i.e., any majority)
of acceptors to promise for it. By promising, an acceptor
declares that, for that instance, it will reject any request
(Phase 1 or 2) with round number less than c-rnd. Phase

1 is completed when Qa confirms the promise to the co-
ordinator. Notice that Phase 1 is independent of the value,
therefore it can be pre-executed by the coordinator. If any
acceptor already accepted a value for the current instance,
it will return this value to the coordinator, together with
the round number received when the value was accepted
(v-rnd).

Once a coordinator completes Phase 1 successfully, it
can proceed to Phase 2. Phase 2 messages contain a value
and the coordinator must select it with the following rule:
if no acceptor in Qa accepted a value, the coordinator can
select any value (i.e., the next client-submitted value). If
however any of the acceptors returned a value in Phase
1, the coordinator is forced to execute Phase 2 with the
value that has the highest round number v-rnd associ-
ated to it. In Phase 2 the coordinator sends a message
containing a round number (the same used in Phase 1).
When receiving such requests, the acceptors acknowledge
it, unless they have already acknowledged another mes-
sage (Phase 1 or 2) with a higher round number. They up-
date their c-rnd and v-rnd variables with the round num-
ber in the message. When a quorum of acceptors accepts
the same round number (Phase 2 acknowledgement), con-
sensus terminates: the value is permanently bound to the
instance, and nothing will change this decision. It is there-
fore safe for learners and deliver the value. Learners learn
this decision either by monitoring the acceptors or by re-
ceiving a decision message from the coordinator.

As long as a nonfaulty coordinator is eventually se-
lected, there is a majority quorum of nonfaulty acceptors,

4

and at least one nonfaulty proposer, every consensus in-
stance will eventually decide on a value. A failed coordi-
nator is detected by the other nodes, which select a new
coordinator. If the coordinator does not receive a response
to its Phase 1 message it can re-send it, possibly with a
bigger round number. The same is true for Phase 2, as
long as the same round number is used. If the coordinator
wants to execute Phase 2 with a higher round number, it
has to complete Phase 1 with that round number before-
hand. Eventually the coordinator will receive a response
or will suspect the failure of an acceptor.

Ring Paxos [21] differs from Paxos in a few aspects that
make it more throughput efficient:

• Acceptors are organized in a logical ring. The coor-
dinator is one of the acceptors. Phase 1 and 2 mes-
sages are forwarded along the ring, each acceptor ap-
pends its decision so that the coordinator, at the end
of the ring, can know the outcome (Step 3 in Fig-
ure 3).

• Ring Paxos executes consensus on value IDs. That
is, for each client value, a unique identification num-
ber is selected by the coordinator. Consensus is exe-
cuted on IDs which are usually significantly smaller
than the real values.

• The coordinator makes use of ip-multicast. It trig-
gers Phase 2 by multicasting a packet containing the
client value, the associated ID, the round number
and the instance number to all acceptors and learn-
ers (Step 2 in Figure 3).

• The first acceptor in the ring creates a small message
containing the round number, the ID and its own de-
cision and forwards it along the logical ring.

• An additional acceptor check is required to guarantee
safety. To accept a Phase 2 message, the acceptor
must know the client value associated with the ID
contained in the packet.

• Once consensus is reached, the coordinator can in-
form all the learners by just confirming that some
value ID has been chosen. The learner will deliver
the corresponding client value in the appropriate in-
stance (Step 4 in Figure 3). This information can be
piggybacked to the next ip-multicast message.

Message losses may cause learners to receive the value
proposed without the notification that it was accepted, the
notification without the value, or none of them. Learn-
ers recover lost messages by inquiring other nodes. Ring
Paxos assigns each learner to a preferential acceptor in
the ring, to which the learner can ask lost messages. Lost
Phase 1 and 2 messages are handled like in Paxos. The
failure of a node (acceptor or coordinator) requires a new
ring to be laid out.

Client
Proposer

Coordinator
Acceptor 1

Acceptor 2

Acceptor n-f

Learner 1
Server 1

Phase 2A

Phase 2B

DecisionPhase 2B

ip-multicast

➁

➂

➃

. . .

exec
Cmd

exec
Cmd

Ring
Paxos

➅

Learner m
Server m

. . .

Cmd() Reply()

➀

➄

➀ Client sends command to coordinator
➁ Coordinator ip-multicasts Phase 2A message
➂ Acceptors exchange Phase 2B messages
➃ Coordinator ip-multicasts Decision message
➄ Servers execute command
➅ Servers send command result to client

Figure 3: Ring Paxos in a client-server setup (n acceptors,
up to f of which can fail, and m learners/servers)

3.2 Speculative execution
The response time experienced by a client of a repli-
cated service can be decomposed into three activities:
(a) proposing and ordering a command, (b) executing the
command at the servers, and (c) transmitting the response
to the client. A reduction in the duration of any of these
activities will likely decrease response time. However, in
the context of Ring Paxos this is not easy to do since the
protocol is already highly optimized and it seems unlikely
that it can be significantly improved to accommodate high
throughput and lower response time. Moreover, the delay
incurred by the execution of a command and the transmis-
sion of its response is mostly service specific.

5

We resort to a speculative (or optimistic) strategy which
consists in overlapping part of the ordering protocol (i.e.,
Ring Paxos) with the execution of commands. In Ring
Paxos, a command reaches the servers before its order-
ing information (Steps 2 and 4 in Figure 3, respectively).
When a command arrives, it is buffered by the server and
only executed once its order is known. We propose to exe-
cute the command immediately after it is received, avoid-
ing any buffering. In doing so, servers can start processing
the command before its order is confirmed, saving some
time.

A server can only respond to a client after it has exe-
cuted the command and its order is confirmed. The mech-
anism is speculative because it works as long as the or-
der in which commands arrive at the servers (and thus the
order in which they are executed) is confirmed. In rare
occasions (discussed below) commands may be executed
out-of-order. If the order in which one or more commands
were executed is not confirmed, the server must rollback
them and re-execute the commands in the proper order.
Rolling back a command is service-specific and can be
done physically (e.g., by using an undo log) or logically
(e.g., by executing an action that reverses the effects of the
out-of-order command) [28]. We illustrate logical roll-
back in Section 4.

Fortunately, in Ring Paxos the order assigned by the
coordinator when a command is ip-multicast is always
confirmed by the acceptors. The only situation in which
the execution order of a command may change is when
the coordinator is replaced by another process (e.g., due
to a crash), a rare event. Lost messages do not cause
commands to be executed out-of-order since each com-
mand (or batch of commands) contains a consensus in-
stance number, which allows a server to detect missing
commands.

We can estimate the improvements expected from spec-
ulative execution. Let δ be the time it takes for a client
to send a command to the coordinator and for a server
to respond to the client with its results (Steps 1 and 6 in
Figure 3). Assume further that ∆o is the time needed to
order the command (i.e., the time difference between the
first and the second ip-multicast related to the command)
and ∆e is the time needed to execute the command. With-
out speculative execution, the response time expected by
a client in the absence of contention is 2δ + ∆o + ∆e.
With speculative execution, it depends on the values of

∆o and ∆e: if ∆o < ∆e then response time is 2δ + ∆e;
otherwise response time is 2δ + ∆o. Thus, we can expect
an improvement of the order of min(∆o,∆e).

3.3 State partitioning
As discussed in Section 2.2, a service implemented by
means of state-machine replication has limited or no scal-
ability at all, as a consequence of server replicas storing
the full service state, and receiving and handling all client
commands. To make the system scalable, we must parti-
tion the service’s state into “sub-states”. If the partition-
ing is perfect, that is, all commands access one sub-state
or another, but no command accesses two or more sub-
states, then the technique can be trivially implemented:
It suffices to replicate each partition individually, using
different and independent instances of Ring Paxos, and
submit client commands to the appropriate partition.

Some services, however, may not allow perfect parti-
tioning. This is the case when a service’s state is parti-
tioned into sub-states such that some of the commands ac-
cess more than one partition. We illustrate this case with
an example. Consider a B-Tree service with insert and
query commands—Section 4 contains a detailed descrip-
tion of this service. We can partition the B-Tree into sub-
trees by assigning to each sub-tree a non-overlapping key
interval and replicate each sub-tree using state-machine
replication. An insert command is directed to a single
replicated sub-tree. A query command that requests a set
of keys within a certain range may be addressed to a single
sub-tree or to multiple sub-trees, depending on the range
and the key intervals assigned to each sub-tree. If the
query command addresses multiple sub-trees, then it is
divided into “sub-commands”, one for each sub-tree; the
client builds the final response from the results received
from each sub-tree. Such a service, however, cannot be
implemented by independent instances of Ring Paxos, as
we now explain.

To understand why, consider the execution on the left
of Figure 4. Under linearizability, this execution can-
not happen since client C3 sees C1’s insert before C2’s,
and C4 sees first C2’s insert before C1’s. If we parti-
tion the B-Tree into two independent sub-trees, however,
as in the execution on the right of Figure 4, then clients
may observe a non-linearizable behavior. In this execu-
tion, C3’s and C4’s Query(0, 100) command is composed

6

Neither sequential consistent nor linearizable

Query(0,100) Reply({10})

Client C3

Client C4

Reordered
Sequence

(Proof)

Client C2

Client C1

Insert(10)

Insert(75)

Reply(ok)

Reply(ok)

Query(0,100) Reply({75})

Both sequential consistent and linearizable (see Proof)

Client C3

Client C4

Reordered
Sequence

(Proof)

Client C2

Client C1

Insert(10)

Insert(75)

Reply(ok)

Reply(ok)

Query(0,50)

Query(51,100)

Query(0,50)

Query(51,100) Reply({75})

Reply({10})
Reply(∅)

Reply(∅)

Figure 4: (Left) An non-linearizable execution that cannot happen if a B-Tree is replicated with state-machine repli-
cation. (Right) How the same execution can happen if sub-trees of the B-Tree are replicated independently.

of two subcommands, Query(0, 50) and Query(51, 100).
The problem is that while C3’s Query(0, 50) succeeds
C4’s Query(0, 50) in one partition, C3’s Query(51, 100)
precedes C4’s Query(51, 100) in the other partition, and
thus, C3’s Query(0, 100) neither precedes nor succeeds
C4’s Query(0, 100). To ensure linearizability we must be
able to establish a total order on all commands, not only
on sub-commands. Notice that this happens in spite of
the fact that the execution of each sub-tree is individually
linearizable.

We now define state partitioning ordering, a guar-
antee needed to ensure that an execution with com-
mands involving multiple service partitions is lineariz-
able. Let a service state be decomposed into parti-
tions P1, ..., Pk, each one replicated and implemented
as a series of consensus executions—the i-th consensus
instance decides on the i-th sub-command of partition
Pk. Let command Cx be composed of sub-commands
{cx,i | cx,i is a subcommand of Cx in Pi}. We define di-
rected graph G = (V,E) such that V contains all com-
mands Cx in the execution and E contains directed edges
Cx → Cy such that cx,i precedes cy,i in Pi. State parti-
tioning ordering requires that G be acyclic.

A consequence ofG being acyclic is that it can be topo-
logically ordered, and therefore for any two commands
Cx and Cy , if cx,i precedes cy,i in partition Pi, then in no
partition Pj , cy,j precedes cx,j , where cx,i, cx,j ∈ Cx and
cy,i, cy,j ∈ Cy . We state the property as an acyclic graph

of commands to cover more complex cases involving re-
lations between more than two commands (see [22] for an
example).

We have integrated state partitioning order into Ring
Paxos as follows. First, there is one ip-multicast address
associated with each partition (corresponds to Step 2 in
Figure 3) and one ip-multicast address associated with de-
cisions (corresponds to Step 4 in Figure 3). Differently
than Ring Paxos, we do not piggyback decision messages
with commands. Learners (i.e., servers) listen on the par-
tition addresses they are interested in and on the decision
address. Acceptors listen on all addresses. A command
contains information about the partitions it accesses. For
each partition accessed by the command, the coordinator
ip-multicasts one Phase 2A message (with the command)
using the address associated with the partition. If a pro-
cess receives the same message more than once, it simply
discards the duplicates. When order is established, the co-
ordinator ip-multicasts the decision message using the de-
cision address. Learners may receive decision messages
for partitions they are not interested in, in which case they
discard the messages.

To conclude, the state partitioning technique improves
the scalability of state-machine replication but it may not
be applicable in some cases or it may impose restrictions
on how the state of a service can be partitioned. Consider
a service whose state contains variables x and y, and a
command that modifies x based on the value of y. In this

7

case, the service’s state can only be partitioned such that
both x and y belong to the same partition. While this
constraint limits the number of services that can benefit
from state partitioning, we show in the next section that
the technique is general enough to allow the implementa-
tion of a high performance fault-tolerant B-Tree service.

4 Replicated parallel B-Trees
In this section we illustrate high performance state-
machine replication with a B-Tree service. We define the
service’s interface, used by the clients, and how it was im-
plemented and optimized using speculative execution and
state partitioning.

B-Tree service The B-Tree stores (key, value) tuples,
where both key and value are 8-byte integers. Clients
can submit insert, delete and query commands. An insert
command insert(k, val) checks whether an entry with key
k already exists in the tree; if not, (k, val) is included in
the tree. In any case the command returns an acknowl-
edgement. A delete command delete(k) removes entry
with key k, if existent, and returns an acknowledgement.
A query command query(min,max) returns all entries
(k, val) such that min ≤ k ≤ max.

Fully replicated B-Tree In order to tolerate server fail-
ures we replicate the B-Tree service using state-machine
replication. Client commands are linearizable and sub-
mitted to the servers by means of Ring Paxos. Insert and
delete commands are received and executed by all oper-
ational servers, but only one server (randomly chosen by
the client) responds. A query command is received by all
operational servers and executed by a single server, ran-
domly chosen by the client. If a client does not receive
the response for a command after some time it resubmits
the command.

Speculative execution To reduce the response time ex-
perienced by clients we use speculative execution. Since
queries do not change the state of the tree, there is no
state to be rolled back in case of commands delivered out-
of-order. Inserts and deletes are executed against the B-
Tree as soon as they are received. To roll back a suc-

cessful insert(k, val), the server executes a delete(k)—
there is nothing to roll back if the insert fails because the
key already exists, a fact that is taken into account by the
server. A delete(k) keeps the value removed so that it can
be rolled back by executing an insert.

State partitioning We divide the state of the B-Tree
in partitions such that each partition is responsible for
a range of keys (i.e., range partitioning). A command
that accesses more than one partition is broken into sub-
commands by the client (i.e., by a client replication li-
brary) and submitted to each concerned partition. Re-
sponses received from multiple partitions are merged at
the client. Key ranges are of the same size, but depend-
ing on the keys included in and deleted from the B-Tree,
partitions may become unbalanced. We do not currently
address this problem, but it is part of our ongoing work.
We are considering techniques to repartition the key space
on-the-fly to keep partions balanced.

5 Performance evaluation
In this section we assess the performance of our replicated
B-Tree. We consider executions in the presence of mes-
sage losses and in the absence of process failures. Process
failures are hopefully rare events; message losses happen
relatively often because of high network traffic.

5.1 Experimental setup
We ran the experiments in a cluster of Dell SC1435
servers equipped with 2 dual-core AMD-Opteron 2.0 GHz
CPUs and 4GB of main memory. The servers are in-
terconnected through an HP ProCurve2900-48G Gigabit
switch (0.1 msec of round-trip time). Each experiment
(i.e., point in the graph) is obtained over a 60-second run
out of which the first and the last 10 seconds are discarded.
Clients and servers run in different nodes. Each client
runs in a closed loop with a random think time in the range
of 0–10 msec.

In all experiments the B-Tree is initialized with 12 mil-
lion entries. Client commands are messages with 256
bytes; responses are 8 Kbytes for ranges and 256 bytes for
inserts and deletes. We consider three workloads: (a) each
client command is a query with range of 1000 keys;

8

0.8K
1.6K
2.4K
3.2K

4K

 0 50 100 150 200

Queries (single)

SMR
CS

10K
20K
30K
40K
50K

 0 50 100 150 200

T
hr

ou
gh

pu
t (

cm
d/

se
c)

Ins/Del (single)

0.1K
1K

10K
100K

1M

 0 50 100 150 200

Number of clients

Ins/Del (batch)

 0
 1
 2
 3
 4
 5
 6

 0 50 100 150 200

Queries (single)

SMR
CS

 0
 1
 2
 3
 4
 5
 6

 0 50 100 150 200

R
es

po
ns

e
tim

e
(m

se
c)

Ins/Del (single)

 0
 1
 2
 3
 4
 5
 6

 0 50 100 150 200

Number of clients

Ins/Del (batch)

Figure 5: State-machine replication (SMR) versus client-server (CS) under three workloads. (Left) Throughput versus
number of clients—notice the different throughput scales, one of which is logarithmic. (Right) Response time versus
number of clients.

(b) each client command is an insert or a delete—hereafter
we refer to inserts and deletes as updates; (c) each client
command is composed of seven batched updates (which
is what fits in a 256-byte message). Additionally, in work-
load (c) Ring Paxos batches client messages in bigger
packets (8 Kbytes) to improve throughput.

5.2 The cost of replication

Our first set of experiments evaluate the costs of state-
machine replication (SMR) with respect to a non-
replicated client-server (CS) setup (see Figures 5 and 6).
For queries and batched updates, replication does not in-
troduce a cost in throughput. In these cases, the execu-
tions are CPU-bound. For single updates, the replicated
setting cannot reach the same throughput as a client-server
configuration because the execution of the former is lim-
ited by the maximum number of instances per second that
can be run by Ring Paxos. In all cases, however, repli-
cation imposes a cost in response time, as shown by the
graphs in right column of Figure 5. Response time for
few clients with batched updates in the replicated setting
is high because with low load Ring Paxos packets are sent
due to timeouts; the effect disappears as clients are added
and messages are sent as soon as an 8-Kbyte packet is full.

Adding replicas can help improve the throughput of

read-only commands, as shown by the left bar on the left
graph in Figure 6. For update commands, no improve-
ment in throughput is possible since all replicas must be
involved in the operations, even if only to received the
commands in the right order, as discussed in Section 2.2.
Figure 6 also shows the corresponding response times,
with the highest values for all replicated experiments.

5.3 Speculative execution

We report our assessment of speculative execution for
configurations with 1, 2, 4 and 8 servers using the queries
and the batched updates workloads. (see Figures 7, 8, 9
and 10). In all scenarios speculation reduces response
time with respect to state-machine replication, although
the results are more visible with batched updates. By
reducing response time, the technique also proportion-
ally improves throughput, a direct consequence of Little’s
law [13].

In our implementation the speculative server is com-
posed of four active threads, whose tasks can be described
as follows: 1) delivering the commands and their order
decided by Ring Paxos, 2) tracking the commands once
their order is received, 3) processing the commands, and
4) sending ackknowledgements to the clients after the
commands are successfully processed and their order is

9

1K

10K

100K

1M

CS 1 2 4 8

T
hr

ou
gh

pu
t (

cm
d/

se
c)

Number of servers

 0

 1

 2

 3

 4

 5

 6

CS 1 2 4 8

R
es

po
ns

e
tim

e
(m

se
c)

Number of servers

Queries (single)
Ins/Del (single)
Ins/Del (batch)

Figure 6: State-machine replication with increasing number of replicas versus client-server. (Left) Maximum through-
put versus number of servers (y-axis in log scale). (Right) Response time versus number of servers.

1K

2K

3K

 0 5 10 15 20 25 30 35 40

Queries (single)

Th
ro

ug
hp

ut
 (c

m
d/

se
c)

Speculative
SMR

50K

100K

150K

200K

250K

300K

 0 50 100 150 200 250 300
Number of clients

Ins/Del (batch)

Speculative
SMR

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

Queries (single)
Re

sp
on

se
 ti

m
e

(m
se

c)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300
Number of clients

Ins/Del (batch)

Figure 7: Speculative execution improvement on state-machine replication with 1 replicas. (Left) Throughput im-
provement versus number of servers. (Right) Resp. time improvement versus number of servers.

known. Thus once the first thread receives a command,
inserts it in a shared buffer from which the third thread
will later pick it up and process it. This implies that each
command spends some time waiting in the buffer until
the third thread is free to process it. Therefore in prac-
tice due to the implementation overheads a request is not
processed immediately after its arrival. Assume ∆b is the
time wasted due to this overhead.

By recalling from Section 3.2 whereas ∆e refers to the
net time required to process a command the total time
needed to process a command is ∆e + ∆b. Accordingly
the expected response time improvement in practice is
min(∆o,∆e+,∆b) in contrast to that of theoretical which
is min(∆o,∆e).

To assess our simple analytical model we consider a
configuration with one replica executing queries only.(see
Figure 11)The graph on the left of the figure shows results
for state-machine replication with and without specula-
tion and the client-server setup. The area between spec-
ulative and SMR curves in this graph is depicted by Re-
sponse time improvement in the graph on the right. This
improvement is less than the min(∆o,∆e+,∆b) which
means one could come up with a better implementation to
even improve the response time further.

10

1K

2K

3K

4K

5K

6K

 0 10 20 30 40 50 60 70 80 90 100

Queries (single)

Th
ro

ug
hp

ut
 (c

m
d/

se
c)

Speculative
SMR

50K
100K
150K
200K
250K
300K

 0 50 100 150 200 250 300
Number of clients

Ins/Del (batch)

Speculative
SMR

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

Queries (single)

Re
sp

on
se

 ti
m

e
(m

se
c)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300
Number of clients

Ins/Del (batch)

Figure 8: Speculative execution improvement on state-machine replication with 2 replicas. (Left) Throughput im-
provement versus number of servers. (Right) Resp. time improvement versus number of servers.

1K
2K
3K
4K
5K
6K
7K
8K
9K

 0 20 40 60 80 100 120 140 160

Queries (single)

T
hr

ou
gh

pu
t (

cm
d/

se
c)

Speculative
SMR

50K

100K

150K

200K

250K

300K

 0 50 100 150 200 250 300 350 400

Number of clients

Ins/Del (batch)

Speculative
SMR

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160

Queries (single)
R

es
po

ns
e

tim
e

(m
se

c)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

Number of clients

Ins/Del (batch)

Figure 9: Speculative execution improvement on state-machine replication with 4 replicas. (Left) Throughput im-
provement versus number of servers. (Right) Resp. time improvement versus number of servers.

5.4 State partitioning

To assess the state partitioning strategy, we consider two
configurations, one with the B-Tree state divided into two
partitions and the other with the B-Tree state divided into
four partitions (labels “2 P” and “4 P” in Figure 12, re-
spectively); in both configurations each partition has two
replicas. In executions with cross-partition query com-
mands, a cross-partition query accesses two partions, re-
gardless the number of existing partitions.

The graph on the left of Figure 12 shows that for
queries, the throughput increases by a factor of 2.1 from
SMR to two partitions, and by a factor of nearly four from
SMR to four partitions. The improvement on batched up-
dates is not as remarkable as on queries, although the sys-

tem throughput increases by factors of 1.8 and 2.6 for two
and four partitions, respectively. The graph on the right of
the figure shows that such an increase in throughput does
not incur in significant changes in response time with re-
spect to SMR. Although these experiments were run using
no cross-partition queries, as we show next, this is not the
most favorable setup for state partitioning.

Figure 13 considers the effects of cross-partition
queries in the state partitioning technique with two parti-
tions in an execution with query commands whereas there
are 2 replicas in each partition. The graphs show that for
lower load (i.e., 100 clients) there is almost no difference
in throughput and response time between different config-
urations. For higher loads, configurations with 50% and

11

2K
3K
4K
5K
6K
7K
8K
9K

 0 20 40 60 80 100 120 140 160 180 200

Queries (single)

T
hr

ou
gh

pu
t (

cm
d/

se
c)

Speculative
SMR

50K

100K

150K

200K

250K

300K

 0 50 100 150 200 250 300 350 400

Number of clients

Ins/Del (batch)

Speculative
SMR

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160 180 200

Queries (single)

R
es

po
ns

e
tim

e
(m

se
c)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400

Number of clients

Ins/Del (batch)

Figure 10: Speculative execution improvement on state-machine replication with 8 replicas. (Left) Throughput im-
provement versus number of servers. (Right) Resp. time improvement versus number of servers.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
tim

e
(m

se
c)

Number of clients

Speculative
SMR

CS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40

tim
e

(m
se

c)

Number of clients

Resp. time improvement
min(!o, !e+!b)

min(!o, !e)
!o

Figure 11: Speculative execution versus state-machine replication (SMR) versus client-server (CS). (Left) Response
time versus number of clients. (Right) Distribution of time at the server in speculative execution versus number of
clients.

75% of cross-partition queries reach higher throughputs.
In fact, the lowest throughput and highest response time
is obtained with a configuration without cross-partition
queries. To understand why, we must look at how CPU
is used in a server.

Each non-speculative server is implemented by three
threads, one that receives commands, one that executes
them, and one that responds to clients. Each thread is
assigned a different processor. The left graph in fig-
ure 15 shows the CPU usage for threads responsible for
execution and responses; the thread that receives com-
mands has low use. While in configurations with no cross-
partition queries, 98% of the processor for command ex-

ecution is used, in configurations with 25% and 100% of
cross-partition queries, the processor for command execu-
tion and response is 95% used. Finally, in configurations
with 50% and 75% of cross-partition queries, the proces-
sors are used less than 90%. The 50% configuration has
slightly higher throughput than the 75% configuration be-
cause it uses less bandwidth.

The reason for the execution processor use to decrease
with the increase in the number of cross-partition queries
is that a cross-partition query is “cheaper” to execute than
a single-partition query since it processes fewer elements
in the B-Tree. However, the response processor use in-
creases with the number of cross-partition queries because

12

1K

5K
10K
20K

100K

300K
500K
800K

Queries Ins/Del (batch)

T
hr

ou
gh

pu
t (

cm
d/

se
c)

1X

2.1X

3.9X

1X

1.8X
2.6X

 0

 1

 2

 3

 4

 5

 6

Queries Ins/Del (batch)

R
es

po
ns

e
tim

e
(m

se
c)

SMR
2 P
4 P

Figure 12: State partitioning (2 and 4 partitions) versus state-machine replication for queries and batched updates with
no cross-partition commands. (Left) Throughput (y-axis in log scale) with improvement over SMR versus command
type. (Right) Response time versus command type.

0

4K

8K

12K

16K

20K

 0 50 100 150 200 250

T
hr

ou
gh

pu
t (

cm
d/

se
c)

Number of clients

0 %
25 %
50 %
75 %

100 %
 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

R
es

po
ns

e
tim

e
(m

se
c)

Number of clients

Figure 13: Effects of cross-partition queries in state partitioning with 2 replicas in each partition. (Left) Throughput
versus number of clients. (Right) Response time versus number of clients.

a cross-partition query is split into two queries (and thus
there are more queries) and servers respond to queries
with fixed-size messages, regardless the amount of infor-
mation contained in the message.

in Figure 16 the graph on left shows the outgoing
bandwidth per server for the cross-partition queries. As
expected by increasing the percentage of cross-partition
queries the outgoing bandwidth for each server increases.
However it seems that for 75% and 100% cases the band-
width is not scaling as expected. To avoid the server’s
outgoing bandwidth as a bottleneck one can keep adding
more replicas to each partition. The effect of 3 repli-
cas in each partition is investigated in figure 14 where

the maximum achievable throughput for all the cases is
increased compared to the 2 replica case(see figure 13).
The right graph in figure 15 depicts the CPU usage for
threads responsible for execution and responses. As the
cross-partition queries increases the responding thread
consumes more CPU and the executing thread ’s CPU
usage decreases. Moreover the outgoing bandwidth per
server is shown in the right graph of figure 16 whereas
compared to the graph on the left the bandwidth is no
more a bottleneck.

Our final set of experiments considers the combined ef-
fects of speculative execution and state partitioning. Fig-
ure 17 shows the relative improvements of the specula-

13

0

4K

8K

12K

16K

20K

24k

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (c

m
d/

se
c)

Number of clients

0 %
25 %
50 %
75 %

100 %
 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

Re
sp

on
se

 ti
m

e
(m

se
c)

Number of clients

Figure 14: Effects of cross-partition queries in state partitioning with 3 replicas in each partition. (Left) Throughput
versus number of clients. (Right) Response time versus number of clients.

 0

 20

 40

 60

 80

 100

0 25 50 75 100

C
PU

 (
%

)

% of cross-partition queries

Execution
Response

 0

 20

 40

 60

 80

 100

0 25 50 75 100

CP
U

 (%
)

% of cross-partition queries

Execution
Response

Figure 15: CPU utilization for the experiments in Figure 13 and 14. (Left) 2 replicas in each partition. (Right) 3
replicas in each partition.

tive execution technique over state-machine replication
with state partitioning for different percentages of cross-
partition queries. In all configurations the technique is
effective in that it decreases response time, with minor
improvements in throughput. The reason for the im-
provement to decrease with the number of cross-parition
queries is that the execution time in a server of a cross-
partition query is smaller than the execution time of a
single-partition query, as explained above. Therefore, the
window of opportunity for speculative execution is nar-
rower (cf. last paragraph in Section 3.2).

6 Related work

State-machine replication is a well established replication
technique, which has been extensively discussed in the
literature. In the following we focus on work related to
the two optimizations we presented, speculative execution
and state partitioning, and to parallel B-Trees.

Optimistic or speculative execution has been suggested
before as a mechanism to reduce the latency of agreement
problems. For example, in [17, 29] clients are included
in the execution of the protocol to reduce the latency of
Byzantine fault-tolerant agreement. In [14, 16] the au-
thors introduce atomic broadcast with optimistic delivery
in the context of replicated databases. The motivation is

14

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 50 100 150 200 250

Ba
nd

w
id

th
 (M

bp
s)

Number of clients

0 %
25 %
50 %
75 %

100 %
 0

 100
 200
 300
 400
 500
 600
 700
 800

 0 50 100 150 200 250

Ba
nd

w
id

th
 (M

bp
s)

Number of clients

0 %
25 %
50 %
75 %

100 %

Figure 16: Outgoing bandwidth per server in cross-partition queries in state partitioning. (Left) 2 replicas in each
partition. (Right) 3 replicas in each partition.

 0

 5

 10

 15

 20

0 25 50 75 100

T
hr

ou
gh

pu
t i

nc
re

as
e

(%
)

Percentage of cross-partition queries

 0

 5

 10

 15

 20

0 25 50 75 100

R
es

po
ns

e
tim

e
de

cr
ea

se
 (

%
)

Percentage of cross-partition queries

Figure 17: Improvements of combined speculative execution and state partition over state-machine replication. (Left)
Throughput increase versus percentage of cross-partition queries. (Right) Response time decrease versus percentage
of cross-partition queries.

similar to ours: overlapping the execution of transactions
or commands with the ordering protocol. Optimistic de-
livery relies on spontaneous ordering of messages, typi-
cal in local-area networks. The property holds in the ab-
sence of contention. If too many commands are submitted
simultaneously, then out-of-order deliveries can happen
more frequently and the technique becomes less interest-
ing. Ring Paxos can use speculative execution under high
contention as it does not depend on spontaneous message
ordering.

Partitioning the state of a replicated service is con-
ceptually similar to partial replication of databases [22].
Partial database replication addresses scalability issues

identified in fully replicated databases. Several partial
database replication protocols have been proposed, some
optimized for local-area networks (e.g., [5, 6, 9, 23]) and
some topology-agnostic (e.g., [12, 24, 26, 27]). Partition-
ing the state of a replicated service differs from partially
replicating a database with respect to the granularity of
the data and the consistency criterion. Databases are usu-
ally organized as collections of data items. Partitioning
such a state is simpler than partitioning the state of a ser-
vice, which may not have been designed with partition-
ing as a goal. With respect to consistency, the two main
consistency criteria used in replicated databases are one-
copy serializability [4] and a generalized form of snapshot

15

isolation [10, 20]. These criteria do not take real-time de-
pendencies between operations into account and therefore
admit more efficient implementations than linearizability.
To a certain extent, making a partially replicated database
scale is “easier” than scaling a linearizable replicated ser-
vice.

Ring Paxos equipped to implement the state partition-
ing technique resembles an atomic multicast protocol [7].
In fact, our state partitioning ordering is inspired by the
acyclic order property of atomic multicast [22]. To the
best of our knowledge, however, no previous work has
explored multicast communication in the Paxos family of
protocols, and no speculative or optimistic multicast pro-
tocol has been proposed so far.

The closest work to our B-Tree service is [1], where
the authors implement and evaluate a distributed B+Tree
build on top of Sinfonia [2]. Sinfonia is a distributed,
fault-tolerant storage engine that offers a low-level ad-
dress space in which application processes can store their
data. Sinfonia offers a minitransaction interface to its
clients. Minitransactions are short-lived operations simi-
lar to a generalized compare-and-swap operation. The au-
thors exploit the flexibility offered by Sinfonia to imple-
ment a scalable B+Tree. As an optimization, inner nodes
are replicated on all Sinfonia client nodes. On the one
hand this allows nodes to traverse a tree locally, without
contacting any other node; on the other hand, all nodes
must be involved in the update of inner nodes. Sinfonia
relies on stronger system assumptions than the ones as-
sumed in this paper. This is due to the use a two-phase
commit protocol to terminate minitransactions.

7 Conclusions
This paper revisits state-machine replication from a per-
formance perspective. State-machine replication is a well-
known approach to rendering services fault tolerant. The
idea is to fully replicate the service state on several servers
and execute every client command in every nonfaulty
server in the same order. Although some optimizations
for performance are possible, inherently the technique in-
troduces an overhead in service response time and is lim-
ited by the throughput of a single server. To mitigate these
drawbacks, we have considered speculative execution and
state partitioning.

Our experiments with speculative execution show that
while the technique can reduce the response time of a
replicated service, the improvement is limited in that the
resulting service’s response time remains quite larger than
the response time of a client-server setup. One question
for further investigation is whether there are other ways
to exploit speculation to reduce response time further. For
example, currently, a server waits until the order in which
a command was executed is confirmed to reply to the
client. Servers could respond to a client immediately af-
ter a command is executed, even if its order confirmation
has not been received, and notify the client later with a
short message once order is established. This mechanism
would overlap both the command execution and its re-
sponse with the ordering protocol.

State partitioning has shown remarkable results. In
some cases, the throughput of a service improved by a fac-
tor or nearly four after partitioning its state. Experiments
have also shown that the two techniques can be combined
with improvements on both throughput and response time.
Our plans for the future are to investigate the generality of
the state partitioning technique and better characterize the
space in which it can be used. We also intend to investi-
gate mechanisms to guarantee (quasi)-balanced B-Trees.

References
[1] M. K. Aguilera, W. M. Golab, and M. A. Shah. A practical

scalable distributed B-tree. PVLDB, 1(1):598–609, 2008.
[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating sys-
tems principles, pages 159–174, 2007.

[3] H. Attiya and J. Welch. Distributed Computing: Fun-
damentals, Simulations, and Advanced Topics. Wiley-
Interscience, 2004.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[5] C. Coulon, E. Pacitti, and P. Valduriez. Consistency
management for partial replication in a high performance
database cluster. In Proceedings of the 11th International
Conference on Parallel and Distributed Systems (11th IC-
PADS’05), volume 1, pages 809–815, Fuduoka, Japan,
July 2005. IEEE Computer Society.

16

[6] A. L. P. F. de Sousa, R. C. Oliveira, F. Moura, and F. Pe-
done. Partial replication in the database state machine. In
NCA, pages 298–309. IEEE Computer Society, 2001.

[7] X. Défago, A. Schiper, and P. Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM
Comput. Surv., 36(4):372–421, 2004.

[8] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323,
1988.

[9] E.Cecchet, J.Marguerite, and W.Zwaenepoel. C-JDBC:
Flexible database clustering middleware. In Proc. of
USENIX Annual Technical Conference, Freenix track,
2004.

[10] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database
replication using generalized snapshot isolation. In Sym-
posium on Reliable Distributed Systems (SRDS’2005), Or-
lando, USA, 2005.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossi-
bility of distributed consensus with one faulty processor.
J. ACM, 32(2):374–382, 1985.

[12] U. Fritzke and P. Ingels. Transactions on partially repli-
cated data based on reliable and atomic multicasts. In
Proceedings of the The 21st International Conference on
Distributed Computing Systems, pages 284–, Washington,
DC, USA, 2001. IEEE Computer Society.

[13] R. Jain. The art of computer systems performance analysis
: techniques for experimental design, measurement, sim-
ulation, and modeling. John Wiley and Sons, Inc., New
York, 1991.

[14] R. Jiménez-Peris, M. Patiño Martı́nez, K. B., and
G. Alonso. Improving the scalability of fault-tolerant
database clusters. In Proceedings of the 22 nd Inter-
national Conference on Distributed Computing Systems
(ICDCS’02), ICDCS ’02, pages 477–, Washington, DC,
USA, 2002.

[15] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and
B. Kemme. Are quorums an alternative for data repli-
cation? ACM Transactions on Database Systems,
28(3):257–294, 2003.

[16] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Pro-
cessing transactions over optimistic atomic broadcast pro-
tocols. In Proceedings of the 19th International Con-
ference on Distributed Computing Systems (ICDCS’99),
Austin (USA), 1999.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative byzantine fault tolerance. In Pro-
ceedings of twenty-first ACM SIGOPS symposium on Op-
erating systems principles, SOSP ’07, pages 45–58, New
York, NY, USA, 2007. ACM.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[19] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[20] Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Martı́nez,
and J. E. Armendáriz-Iñigo. Snapshot isolation and in-
tegrity constraints in replicated databases. ACM Trans.
Database Syst., 34(2), 2009.

[21] P. Marandi, M. Primi, N. Schiper, and F. Pedone.
Ring paxos: A high-throughput atomic broadcast proto-
col. In Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages 527 –536,
2010.

[22] N. Schiper. On Multicast Primitives in Large Networks
and Partial Replication Protocols. PhD thesis, University
of Lugano, 2009.

[23] N. Schiper, R. Schmidt, and F. Pedone. Optimistic
algorithms for partial database replication. In Princi-
ples of Distributed Systems, 10th International Confer-
ence, OPODIS 2006, Bordeaux, France, December 12-
15, 2006, Proceedings, volume 4305 of Lecture Notes in
Computer Science, pages 81–93. Springer, 2006.

[24] N. Schiper, P. Sutra, and F.Pedone. P-store: Genuine par-
tial replication in wide area networks. In Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2010.

[25] F. B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial. ACM Comput-
ing Surveys, 22(4):299–319, 1990.

[26] D. Serrano, M. Patiño-Martı́nez, R. Jiménez-Peris, and
B. Kemme. Boosting database replication scalability
through partial replication and 1-copy-snapshot-isolation.
In PRDC, pages 290–297. IEEE Computer Society, 2007.

[27] D. Serrano, M. Patiño-Martı́nez, R. Jiménez-Peris, and
B. Kemme. An autonomic approach for replication of
internet-based services. In Symposium on Reliable Dis-
tributed Systems (SRDS’2008), pages 127–136. IEEE,
2008.

[28] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann, 2002.

[29] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen,
J. Flinn, and B. Liskov. Tolerating latency in replicated
state machines through client speculation. In Proceedings
of the 6th USENIX symposium on Networked systems de-
sign and implementation, pages 245–260, Berkeley, CA,
USA, 2009. USENIX Association.

17

Appendix
In the following we argue that our B-Tree algorithm is
linearizable. Notice that speculative delivery alone does
not change the correctness of the original state-machine
replication algorithm: every command is propagated to
every replica and executed in their final order, just like
state-machine replication [3]. What we must show is that
state partitioning is also linearizable.

Assume a B-Tree whose state is divided into partitions
Π = {P1, P2, ...}. A command C is composed of one
or more sub-commands C(k), one for each partition Pk

it addresses. In particular, C can insert, delete or query
items in the B-Tree. Each B-Tree partition is replicated
and implemented as a series of consensus executions such
that the i-th consensus instance decides on the i-th sub-
command of partition Pk. Sub-commands in a partition
are executed in the order in which they are decided, that
is, the i-th sub-command only starts after the (i − 1)-th
sub-command has finished.

We recall that G = (V,E) is a directed graph where
V contains all commands Cx in the execution and E con-
tains a directed edge Cx → Cy iff a sub-command of Cx

is executed before a sub-command ofCy in some partition
Pk. State partitioning ordering states that G is acyclic.

In order to show that any execution of the B-Tree im-
plemented using state-machine replication and state par-
titioning is linearizable, we must show that there is a way
to reorder the commands in a sequence S such that (i) S
respects the order of non-overlapping commands across
all clients, and (ii) S respects the semantics of the com-
mands, as defined in their sequential specifications.

We initially show that there is a sequence S that re-
spects the order of non-overlapping commands across all
clients. To do so, we consider two conditions: (a) If Cx

precedes Cy in G, then Cx precedes Cy in S. (b) If Cx

finishes before Cy starts (i.e., they are non-overlappping),
then we order Cx before Cy in S. We claim that condi-
tions (a) and (b) can always be accommodated. To see
why, assume for a contradiction that Cx precedes Cy in
G and Cy finishes before Cx starts. From the fact that
Cx precedes Cy in G, both Cx and Cy access some parti-
tion Pk and Cx(k) is executed before Cy(k) at Pk. Thus,
Cx(k) is delivered before Cy(k), and it follows that Cy

cannot finish before Cx starts.
We now show that sequence S respects the semantics of

B-Tree commands. We must show that any command in S
takes into account all commands that precede it, and in the
order in which they appear in S. Let Cx be a command
in S. For every sub-command Cx(k) of Cx, only com-
mands on Pk can affect Cx(k), thus, we can focus on sub-
commands Cy(k) only, that is, sub-commands of some
command Cy on the same partition Pk. Since Cx and Cy

are composed of sub-commands on a common partition,
from the definition of G and the fact that it is acyclic, we
can totally order them. Thus, sub-commands Cx(k) and
Cy(k) will be executed on partition Pk according to the
order of Cx and Cy in S. Moreover, from the implemen-
tation of each partition, a sub-command in a partition is
only executed after the sub-command that precedes it is
completed. Thus, sub-commands take into account their
preceding sub-commands, in the order they are executed.

18

