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Abstract

In this paper, we study atomic multicast, a fundamental abstraction for building fault-tolerant systems. We suppose a
system composed of data centers, or groups, that host many processes connected through high-end local links; a few groups
exist, interconnected through high-latency communication links. In this context, a recent paper has shown that no multicast
protocol can deliver messages addressed to multiple groups in one inter-group delay and be genuine, i.e., to deliver a message
m, only the addressees of m are involved in the protocol.

We first survey and analytically compare existing multicast algorithms to identify latency-optimal multicast algorithms.
We then propose a non-genuine multicast protocol that may deliver messages addressed to multiple groups in one inter-group
delay. Experimental comparisons against a latency-optimal genuine protocol show that the non-genuine protocol offers
better performance in all considered scenarios, except in large and highly loaded systems. To complete our study, we also
evaluate a latency-optimal protocol that tolerates disasters, i.e., group crashes.



1 Introduction

Atomic broadcast and multicast are powerful group com-
munication abstractions to build fault-tolerant distributed
systems by means of data replication. Informally, they
allow messages to be propagated to the group members
and ensure agreement on the set of messages delivered and
on their delivery order. As opposed to atomic broadcast,
atomic multicast allows messages to be addressed to a sub-
set of the members of the system. Multicast can thus be
seen as the adequate abstraction for applications in which
nodes replicate a subset of the data, i.e., partial replication.

In this paper we consider multicast protocols that span
multiple geographical locations. We model the system as
a set of groups, each one containing processes (e.g., data
centers hosting local nodes). While a few groups exist, each
one can host an arbitrary number of processes. Groups are
interconnected through high-latency communication links;
processes in a group are connected through high-end local
links. The latency and bandwidth of intra- and inter-group
links are separated by at least two orders of magnitude, and
thus, inter-group links should be used sparingly.

From a problem solvability point of view, atomic multi-
cast can be easily reduced to atomic broadcast: every mes-
sage is broadcast to all the groups in the system and only
delivered by those processes the message is originally ad-
dressed to. Such a multicast algorithm is not genuine [8]
though, since processes not addressed by the message are
also involved in the protocol.

Although most multicast algorithms proposed in the lit-
erature are genuine (e.g., [7, 6, 13]), it has been shown
that genuineness is an expensive property [14]: no genuine
atomic multicast algorithm can deliver global messages,
i.e., messages addressed to multiple groups, in one inter-
group message delay,1 a limitation that is not imposed on
non-genuine multicast algorithms. Therefore, when choos-
ing a multicast algorithm, it seems natural to question the
circumstances under which a higher-latency genuine al-
gorithm is more efficient than a non-genuine algorithm,
which addresses more processes but delivers messages in
one inter-group delay.

To answer the question, we first survey and analytically
compare genuine and non-genuine multicast protocols. We
identify inter-group-latency optimal protocols and intro-
duce a novel non-genuine multicast algorithm. This algo-
rithm may deliver global messages in a single inter-group
delay (i.e., it is inter-group-latency optimal), and may de-
liver local messages, i.e., messages addressed to a single
group, with no inter-group communication. We then ex-
perimentally evaluate the three inter-group-latency optimal
multicast protocols: two that do not tolerate group crashes,

1This lower bound is tight since the algorithms in [7, 14] can deliver
messages in two inter-group delays.

the genuine protocol in [14] and the non-genuine protocol
introduced in this paper, and a non-genuine protocol that
tolerates group crashes [15], denoted as disaster-tolerant—
the only disaster-tolerant genuine multicast we are aware of
requires too many inter-group messages to be of practical
interest.

We experimentally identify that the genuine protocol
may postpone the delivery of messages by as much as two
inter-group delays, a phenomenon that we refer to as con-
voy effect. We then revisit the algorithm and propose an op-
timization to remove the convoy effect for local messages.2

Although simple, this optimization decreases the delivery
latency of local messages by as much as two orders of mag-
nitude.

We then assess the scalability of the multicast protocols
by varying the number of groups, the proportion of global
messages, and the load, i.e., the frequency at which mes-
sages are multicast. The results suggest that the genuine-
ness of multicast is interesting only in large and highly
loaded systems, in all the other considered scenarios the
non-genuine protocol introduced in this paper outperforms
the optimal genuine algorithm. We also show that although
the disaster-tolerant multicast protocol is in general more
costly than the two other implemented protocols, it matches
the performance of the genuine algorithm when there are
few groups.

Summing up, this paper makes the following contribu-
tions: (a) it surveys multicast algorithms and compare them
analytically, (b) it introduces a fast non-genuine multicast
algorithm and empirically compares it against other latency-
optimal multicast algorithms, and (c) it identifies a con-
voy effect that slows down the delivery of messages and
proposes an optimization to remove this undesirable phe-
nomenon for local messages. Although the phenomenon
has been identified in the algorithm in [14], it also happens
in other genuine multicast algorithms (e.g., [7, 13]).

The rest of the paper is structured as follows. In Sec-
tion 2, we introduce the system model and some definitions.
Section 3 briefly surveys the existing atomic multicast algo-
rithms and compares them analytically. In Section 4, we
present the non-genuine multicast protocol and explain in
more detail the protocols of [14, 15]; some implementation
issues are discussed in Section 5. The experimental evalua-
tion of the protocols is presented in Section 6 and we con-
clude the paper in Section 7.

2 System Model and Definitions

2.1 Processes, Links, and Groups

We consider a system Π = {p1, ..., pn} of processes
which communicate through message passing and do not

2The convoy effect seem to be unavoidable for global messages.
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have access to a shared memory or a global clock. We as-
sume the benign crash-stop failure model: processes may
fail by crashing, but do not behave maliciously. A process
that never crashes is correct; otherwise it is faulty. The max-
imum number of processes that may crash is denoted by f .

The system is asynchronous, i.e., messages may expe-
rience arbitrarily large (but finite) delays and there is no
bound on relative process speeds. Furthermore, the com-
munication links do not corrupt nor duplicate messages, and
are quasi-reliable: if a correct process p sends a message m
to a correct process q, then q eventually receives m.3

We define Γ = {g1, ..., gm} as the set of process groups
in the system. Groups are disjoint, non-empty and satisfy⋃
g∈Γ g = Π. For each process p ∈ Π, group(p) identi-

fies the group p belongs to. Hereafter, we assume that in
each group consensus is solvable (the consensus problem is
defined below).

2.2 Specifications of Agreement Problems

Consensus Throughout the paper, we assume the exis-
tence of a uniform consensus abstraction. In the consensus
problem, processes propose values and must reach agree-
ment on the value decided. Uniform consensus is defined
by the primitives propose(v) and decide(v) and satisfies the
following properties [9]: (i) uniform integrity: if a process
decides v, then v was previously proposed by some process,
(ii) termination: every correct process eventually decides
exactly one value, (iii) uniform agreement: if a process de-
cides v, then all correct processes eventually decide v.

Reliable Multicast With reliable multicast, messages may
be addressed to any subset of the groups in Γ. For each
message m, m.dst denotes the groups to which the mes-
sage is reliably multicast. By abuse of notation, we write
p ∈ m.dst instead of ∃g ∈ Γ : g ∈ m.dst ∧ p ∈ g. Uni-
form reliable multicast is defined by primitives R-MCast(m)
and R-Deliver(m), and satisfies the following properties : (i)
uniform integrity: for any process p and any message m, p
R-Delivers m at most once, and only if p ∈ m.dst and m
was previously R-MCast, (ii) validity: if a correct process
p R-MCasts a message m, then eventually all correct pro-
cesses q ∈ m.dst R-Deliver m, (iii) uniform agreement:
if a process p R-Delivers a message m, then eventually all
correct processes q ∈ m.dst R-Deliver m.

Atomic Multicast Atomic multicast is defined by the
primitives A-MCast and A-Deliver and satisfies all the
properties of reliable multicast as well as uniform prefix
order: for any two messages m and m′ and any two

3Note that quasi-reliable links can be built on top of lossy links pro-
vided that they are fair, i.e., not all messages sent are lost [2].

processes p and q such that {p, q} ⊆ m.dst ∩ m′.dst,
if p A-Delivers m and q A-Delivers m′, then either p
A-Delivers m′ before m or q A-Delivers m before m′.

In this context, we say that a message m is local iff it
is addressed to one group only. On the other hand, if m is
multicast to multiple groups, it is global.

Let A be an algorithm solving atomic multicast and R(A)
be the set of all admissible runs of A. We define the gen-
uineness of A as follows [8]:
• Genuineness: An algorithm A solving atomic multi-

cast is genuine iff for any run R ∈ R(A) and for any
process p, in R, if p sends or receives a message then
some message m is A-MCast and either p is the pro-
cess that A-MCasts m or p ∈ m.dst.

3 A Brief Survey of Multicast Algorithms

Although the literature on atomic broadcast algorithms
is abundant [5], few atomic multicast protocols exist. We
review and compare them analytically. We use two criteria
for this comparison: best-case message delivery latency and
inter-group message complexity. These metrics are com-
puted by considering a failure-free scenario where a mes-
sage is A-MCast by some process p to k groups, k ≥ 2,
including group(p). We let δ be the inter-group message
delay and assume that the intra-group delay is negligible.

In [8], the authors show the impossibility of solving gen-
uine atomic multicast with unreliable failure detectors when
groups are allowed to intersect. Hence, the algorithms cited
below consider non-intersecting groups. We first review al-
gorithms that assume that all groups contain at least one cor-
rect process, i.e., disaster-vulnerable algorithms, and then
algorithms that tolerate group crashes, i.e., disaster-tolerant
algorithms.

3.1 Disaster-vulnerable Algorithms

These protocols can be viewed as variations of Skeen’s
algorithm [3], a multicast algorithm designed for failure-
free systems, where messages are associated with times-
tamps and the message delivery follows the timestamp or-
der.

In [13], the addressees of a messagem, i.e., the processes
to which m is multicast, exchange the timestamp they as-
signed to m, and, once they receive this timestamp from a
majority of processes of each group, they propose the max-
imum value received to consensus. Because consensus is
run among the addressees of a message and can thus span
multiple groups, this algorithm is not well-suited for wide
area networks. In the case of a message multicast to multi-
ple groups, the algorithm has a latency of 4δ.
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In [6], consensus is run inside groups exclusively. Con-
sider a messagem that is multicast to groups g1, ..., gk. The
first destination group of m, g1, runs consensus to define
the final timestamp of m and hands over this message to
group g2. Every subsequent group proceeds similarly up to
gk. To ensure agreement on the message delivery order, be-
fore handling other messages, every group waits for a final
acknowledgment from group gk. Hence, the latency degree
of this algorithm is (k + 1)δ.

In [7], inside each group g, processes implement a log-
ical clock that is used to generate timestamps; consensus
is used among processes in g to maintain g’s clock. Every
multicast message m goes through four stages. In the first
stage, in every group g addressed by m, processes define a
timestamp for m using g’s clock. This is g’s proposal for
m’s final timestamp. Groups then exchange their proposals
and setm’s final timestamp to the maximum among all pro-
posals. In the last two stages, the clock of g is updated to
a value bigger than m’s final timestamp and m is delivered
when its timestamp is the smallest among all messages that
are in one of the four stages. In the best case, messages are
A-Delivered within 2δ, which is optimal for genuine multi-
cast algorithms [14].

In contrast to [7], [14] allows messages to skip stages,
therefore sparing the execution of consensus instances. The
best-case latency and the number of inter-group messages
sent in [14] are however the same as in [7], as consensus
instances are run inside groups. Nevertheless, we observe
in Section 6.3.1 that this optimization allows to reduce the
measured delivery latency under a broad range of loads.

In this paper, we introduce a non-genuine algorithm that
is faster than [7] and [14]: it can A-Deliver messages within
δ, which is obviously optimal.

3.2 Disaster-tolerant Algorithms

To the best of our knowledge, [15] is the only paper to
address the problem of group crashes. Two protocols are
presented. The first one is genuine and tolerates an arbi-
trary number of failures but requires perfect failure detec-
tion and has a latency of 6δ, it is therefore not suited for
wide area networks. The second algorithm is not genuine
but only requires perfect failure detection inside each group.
It can deliver messages within only 2δ.4 It however requires
a two-third majority of correct processes, i.e., f < n/3. As
a corollary of [11], this protocol is optimal.5

4This algorithm can also tolerate unreliable failure detection, but at the
cost of a weaker liveness guarantee.

5To tolerate group crashes and deliver global messages in 2δ, a non-
genuine algorithm such as Fast Paxos [10] could also be used. However,
this algorithm achieves a latency of 2δ only when messages are sponta-
neously ordered, an assumption [15] does not need. Moreover, in contrast
to Fast Paxos, [15] may deliver local messages with no inter-group com-
munication.

3.3 Analytical Comparison

Figure 1 provides a comparison of the presented algo-
rithms. To compute the inter-group message complexity,
we assume that there are n processes in the system and that
every group is composed of d processes. The third and the
fifth column respectively indicate whether the protocol tol-
erates group crashes and whether it is latency-optimal.

Algorithm genuine? disaster latency inter-group latency
tolerant? msgs. optimal?

[6] yes no (k + 1)δ O(kd2) no
[13] yes no 4δ O(k2d2) no

[7, 14] yes no 2δ O(k2d2) yes
this paper no no δ O(n2) yes

[15] yes yes 6δ O(k3d3) no
[15] no yes 2δ O(n2) yes

Figure 1. Comparison of the algorithms (d : nb. of pro-
cesses per group, k : nb. of destination groups)

4 Optimal Multicast Algorithms

To experimentally evaluate and compare genuine and
non-genuine atomic multicast protocols, we picked the
algorithms achieving optimal latency in each category.6

We begin by presenting protocols that do are disaster-
vulnerable, namely the genuine algorithm of [14], denoted
as Age, and the non-genuine algorithm introduced in this
paper, denoted as Ang . This latter algorithm delivers mes-
sages faster thanAge: Ang has delivery latency of δ units of
time. We then present the non-genuine and disaster-tolerant
algorithm of [15], Adt.

4.1 Genuine Multicast (Age)

In Algorithm Age, to multicast a message m, m is first
reliably multicast to its addressees and then assigned a
global unique timestamp. To ensure agreement on the mes-
sage delivery order, two properties are ensured: (1) pro-
cesses agree on the message timestamps and (2) after a pro-
cess p A-Delivers a message with timestamp ts, p does not
A-Deliver a message with a smaller timestamp than ts. To
satisfy these two properties, inside each group g, processes
implement a logical clock that is used to generate times-
tamps and use consensus to update it.

In more detail, every multicast message m goes trough
the following four stages:

• Stage s0: In every group g ∈ m.dst, processes define
a timestamp form using g’s clock. This is g’s proposal
for m’s final timestamp.

6Another criterion for choosing the algorithms could have been inter-
group message complexity. However, existing algorithms that exhibit a
lower message complexity than the ones we picked have a prohibitive la-
tency.
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(a) Algorithm Age when a message m is A-MCast to groups g1 and g2.
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Round 1

Round 2

(b) Algorithm Ang when messages m and m′ are A-MCast from p1 and are respectively addressed to g1 and {g2, g3}.

Figure 2. Algorithms Age and Ang in the failure-free case.

• Stage s1: Groups in m.dst exchange their proposals
for m’s timestamp and set m’s final timestamp to the
maximum timestamp among all proposals.

• Stage s2: Every group inm.dst sets its clock to a value
greater than the final timestamp of m.

• Stage s3: Message m is A-Delivered when its times-
tamp is the smallest among all messages that are in one
of the four stages and not yet A-Delivered.

Timestamps can be implemented in different ways. For
example, each group g addressed by message m can de-
fine g’s timestamp by using the consensus instance number
that decides on m (stage s1). Moreover, a consensus in-
stance may decide on multiple messages, possibly in differ-
ent stages. Since every consensus instance i may decide on
messages in stage s2, after deciding in i, g’s clock is set to
one plus the biggest message timestamp that i decided on.

In contrast to [7], not all messages go trough all four
stages in Age. Messages that are multicast to one group
only can jump from stage s0 to stage s3. Moreover, even
if a message m is multicast to more than one group, on
processes belonging to the group that proposed the largest
timestamp, i.e., m’s final timestamp, m skips stage s2.

Figure 2 (a) illustrates a failure-free run of the algorithm
in which, at the beginning of the run, groups g1 and g2 have
their clock equal to 10 and 5 respectively.

4.2 Non-Genuine Multicast (Ang)
Algorithm Ang works as follows (see Figure 2 (b)). To

A-MCast a message m, a process p R-MCasts m to p’s

group. In parallel, processes execute an unbounded se-
quence of rounds. At the end of each round, processes A-
Deliver a set of messages according to some deterministic
order. To ensure agreement on the messages A-Delivered
in round r, processes proceed in two steps: In the first step,
inside each group g, processes use consensus to define g’s
bundle of messages. In the second step, groups exchange
their message bundles. The set of message A-Delivered by
some process p at the end of round r is the union of all bun-
dles, restricted to messages addressed to p.

Notice that in the current protocol, local messages, i.e.,
messages multicast to a single group, are delivered only
after receiving the groups’ bundle of messages. This is
however unnecessary: local messages can be delivered di-
rectly after consensus since they are addressed to a single
group, and thus before receiving the groups’ message bun-
dles. Hence, these messages do not bear the cost of a sin-
gle inter-group delay unless: (a) they are multicast from a
group different than their destination group or (b) they are
multicast while the groups’ bundle of messages are being
exchanged. Obviously, nothing can be done to avoid case
(a) from happening. However, we can make case (b) un-
likely to happen by executing multiple consensus instances
per round. The number of consensus instances per round is
denoted by parameter κ.

Although the two above optimizations decrease the aver-
age delivery latency of local messages, the delivery latency
of global messages, i.e., messages that are not local, can be
increased by as many as κ - 1 consensus instances (this is
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because each group’s bundle of messages is sent every κ
consensus instance). Hence, to reduce the delivery latency
of global messages, we allow rounds to overlap. That is, we
start the next round before receiving the groups’ bundle of
messages of the current round. In other words, we execute
consensus instances while the groups’ bundle of messages
are being exchanged. In our implementation, message bun-
dles are exchanged after every η consensus instances.

To ensure agreement on the relative delivery order of lo-
cal and global messages, it is necessary that processes in-
side the same group agree on when global messages of a
given round are delivered, i.e., after which consensus in-
stance. To summarize, processes send the message bundle
of some round r after consensus instance r ·η and A-Deliver
messages of round r after instance r · η+κ. Section 6.2 ex-
plores the influence of these parameters on the protocol.

4.3 Disaster-tolerant Multicast (Adt)

Algorithm Adt is similar to Algorithm Ang . To cope
with group crashes, the exchange of message bundles is
handled differently however. Indeed, in case some group
g crashes, Ang does not ensure liveness as there will be
some round r after which no process receives the message
bundles from g. To circumvent this problem we proceed in
two steps: (a) we allow processes to stop waiting for g’s
message bundle, and (b) we let processes agree on the set of
message bundles to consider for each round.

To implement (a), processes maintain a common view of
the groups that are trusted to be alive, i.e., groups that con-
tain at least one alive process. Processes then wait for the
message bundles from the groups currently in the view. A
group g may be erroneously removed from the view, if it
was mistakenly suspected of having crashed. Therefore, to
ensure that message m multicast by a correct process will
be delivered by all correct addressees of m, we allow mem-
bers of g to add their group back to the view. To achieve
(b), processes agree on the sequence of views and the set of
message bundles between each view change. For this pur-
pose, we use a generic broadcast abstraction [12] to propa-
gate message bundles and view change messages, i.e., mes-
sages to add or remove groups.7 Since message bundles can
be delivered in different orders at different processes, pro-
vided that they are delivered between the same two view
change messages, we define the message conflict relation
as follows: view change messages conflict with all mes-
sages and message bundles only conflict with view change
messages. As view change messages are not expected to be
broadcast often, such a conflict relation definition allows for
fast message delivery (i.e., within two inter-group delays),

7Informally, generic broadcast ensures the same properties as atomic
multicast except that messages are always addressed to all groups and only
conflicting messages are totally ordered. That is, the uniform prefix order
property of Section 2.2 is only ensured for messages that conflict.

which is optimal [11].

5 Implementation Issues
We here present some key points of the algorithms’ im-

plementation. The three algorithms of Section 4 were im-
plemented in Java and use a Paxos library as the consensus
protocol [4]; all communications are based on TCP.

Inter-group communication represents a major source of
overhead and should thus be used sparingly. In our im-
plementation, these communications are thus handled by a
dedicated layer. As we explain below, this layer achieves
some optimizations in order to reduce the number of inter-
group messages sent.

Message Batching. Inside each group g, a special pro-
cess is elected as leader [16]. Members of a group use their
leader to forward messages to the remote groups’ leaders.
When a leader receives a message m, it dispatches m to the
members of its group.

Message Filtering. In each one of the presented al-
gorithms, inter-group communication originating from
processes of the same group g presents some redundancy.
In the non-genuine Algorithms Ang and Adt, at the end of
a round r, members of g send the same message bundle.
Moreover, in the genuine Algorithm Age, members of g
send the same timestamp proposal for some message m. To
avoid this redundancy, only the groups’ leaders propagate
these messages. More precisely, message bundles of
Algorithms Ang and Adt, and the timestamp proposals
of Algorithm Age are only sent by the groups’ leaders.
Messages sent by non-leader processes are discarded by
the inter-group communication layer.

In the case of a leader failure, these optimizations may
lead to the loss of some messages, these messages will thus
have to be resent.

6 Experimental evaluation
In this section, we evaluate experimentally the perfor-

mance of optimal multicast protocols. We start by describ-
ing the system parameters and the benchmark used to as-
sess the protocols. We then explore the influence of κ and
η on Ang; compare the genuine and non-genuine protocols
by varying the load imposed on the system, the number of
groups, and the proportion of global messages; and measure
the overhead of tolerating disasters.

6.1 Experimental Settings

The system. The experiments were conducted in a cluster
of 24 nodes connected with a gigabit switch. Each node is
equipped with two dual-core AMD Opteron 2 Ghz, 4GB
of RAM, and runs Ubuntu Linux 4. In all experiments,
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each group consists of 3 nodes; the number of groups varies
from 4 to 8. The bandwidth and message delay of our local
network, measured using netperf and ping, are about 940
Mbps and 0.05 ms respectively. To emulate inter-group de-
lays with higher latency and lower bandwidth, we used the
Linux traffic shaping tools.

We emulated two network setups. In setup 1, the mes-
sage delay between any two groups follows a normal dis-
tribution with a mean of 100 ms and a standard deviation
of 5 ms, and each group is connected to the other groups
via a 125 KBps (1 Mbps) full-duplex link. In setup 2, the
message delay between any two groups follows a normal
distribution with a mean of 20 ms and a standard deviation
of 1 ms, and each group is connected to the other groups via
a 1.25MBps (10 Mbps) full-duplex link. Due to space con-
straints, we only report the results using setup 1 and briefly
comment on the behavior of the algorithms in setup 2.

The benchmark. The communication pattern of our
benchmark was modeled after TPC-C, an industry standard
benchmark for on-line transaction processing (OLTP) [1].
TPC-C represents a generic wholesale supplier workload
and is composed of five predefined transaction types. Two
out of these five types may access multiple warehouses; the
other three types access one warehouse only. We assume
that each group hosts one warehouse. Hence, the ware-
houses involved in the execution of a transaction define to
which group the transaction is multicast. Each multicast
message also contain the transaction’s parameters and on
average, a message contains 80 bytes of payload.

In TPC-C, about 10% of transactions involve multiple
warehouses. Thus, roughly 10% of messages are global. To
assess the scalability of our protocols, we parameterize the
benchmark to control the proportion p of global messages.
In the experiments, we report measurements for p = 0.1
(i.e., original TPC-C) and p = 0.5. The vast majority
of global messages involve two groups. Note that in our
benchmark, transactions are not executed; TPC-C is only
used to determine the communication pattern.

Each node of the system contains an equal number of
clients executing the benchmark in a closed loop: each
client multicasts a message and waits for its delivery before
multicasting another message. Hence, all messages always
address the sender’s group; global messages also address
other groups. The number of clients per node varies be-
tween 1 and 160 and in each experiment, at least one hun-
dred thousand messages are multicast.

For all the experiments, we report either the average mes-
sage delivery latency (in milliseconds) or the average inter-
group bandwidth (in kilo bytes per second) as a function of
the throughput, i.e., the number of messages A-Delivered
per minute. We computed 95% confidence intervals for the
A-delivery latency but we do not report them here as they

were always smaller than 2% of the average latency. The
throughput was increased by adding an equal number of
clients to each node of the system.

6.2 The influence of κ and η on Ang

Setting parameters κ, the number of consensus instances
per round, and η, the number of consensus instances be-
tween two consecutive message bundle exchanges, is no
easy task. In principle, the optimal value of κ should be
so that groups execute as many local consensus instances as
they can while message bundles are being exchanged, but
not too many. If we let ∆max and δcons respectively denote
the maximum inter-group delay and the consensus latency,
κ should be set to b∆max/δconsc. Setting parameter η is
however less trivial: setting it low potentially decreases the
average global message latency but may also saturate the
inter-group network.

In Figures 3(a) and 3(b), we first explore the influence of
κ on the protocol in a system with four groups when rounds
do not overlap (i.e., η = κ). We first consider local mes-
sages, and note that setting κ too low (i.e., κ = 20 in our
experiments) or too high (κ = 120) respectively increases
the latency or harms the scalability of the protocol: as the
number of global messages sent at the end of each round in-
creased, the inter-group communication became the bottle-
neck since the traffic was too bursty. In our settings, κ = 60
gave the best results for local messages (see Figure 3(a)).

For global messages, setting κ to 60 gives worse perfor-
mance than setting it to 20 (see Figure 3(b)). We address
this problem by tuning parameter η, as illustrated in Fig-
ures 3(c) and 3(d). While setting η too low (η = 4) worsens
the latency and the scalability of the protocol, setting it too
high (η = 60) harms its scalability. When η = 30, the local
message latency is similar to the one when κ = η = 60
(Figure 3(a)), while almost matching the global message la-
tency of κ = η = 20 (Figure 3(b)). Moreover, with respect
to Figures 3(a) and 3(b), the scalability of the protocol is
improved for both local and global messages.

To further reduce the global message latency, we tried
other values for η. However, we did not find a value that
gave better performance than η = 30 nor did we reach
the theoretical optimum latency of one δ, i.e., 100 ms. We
observed that this was mainly because groups do not start
rounds exactly at the same time; consequently, some groups
had to wait more than 100 milliseconds to receive all mes-
sage bundles. Therefore, in all experiments that follow we
used κ = 60 and η = 30.

6.3 Genuine vs. Non-Genuine Multicast

We now compare the non-genuine algorithm Ang to its
genuine counterpart Age in a system with four groups (see
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Figure 3. The influence of κ and η on Ang in a system with four groups.

Figures 4(a) and 4(b)). From the results, we observe that the
non-genuine algorithm delivers local and global messages
faster than its genuine counterpart, except under very high
loads (Figure 4(b)). For global messages, this is a direct
consequence of the fact that the best-case delivery latency
of Ang is δ but it is of 2δ for Age. In fact, under low loads,
the latency of Age was only a few milliseconds higher than
200 milliseconds. For local messages it is however less ob-
vious why Age takes between 65 and 240 milliseconds to
deliver local messages whileAng only takes a few millisec-
onds (Figure 4(a)). In fact, this phenomenon is due to global
messages that slow down the delivery of local messages as
we now explain.

Consider a global message m1 and a local message m2

that are addressed to groups {g1, g2} and g1 respectively.
Processes in g1 R-Deliver m1 and define their proposal
timestamp form1 with consensus instance k1. Shortly after,
members of g1 R-Deliver m2 and decide on m2 in consen-
sus instance k2, such that k2 > k1. Message m2 cannot
be delivered at this point since m1 has a smaller timestamp
than m2 and m1 has not been delivered yet. To deliver the
local message m2, members of g1 must wait to receive g2’s
timestamp proposal for m1, which may take up to 2δ, i.e.,
200 milliseconds, if m1 was A-MCast from within g1.

In the scenario described above,m2 is experiencing what
we denote as the convoy effect, i.e., m1 gets a smaller tem-
porary timestamp than m2 right before m2 could have been
delivered and postpones m2’s delivery. Naturally, the con-
voy effect can also happen to global messages: in the sce-
nario described above, if we letm2 be a global message and

consider that processes in g1 decide on m2 for the second
time in consensus instance k2, m2 could be delayed by 2δ
and thus be delivered within as much as 400 milliseconds.
Below, we explain how we modifiedAge to remove the con-
voy effect for local messages. For global messages how-
ever, the convoy effect seems to be unavoidable if agree-
ment on their delivery order must be ensured.

6.3.1 Optimizing the Genuine Algorithm

To deliver local messages faster, we handle global and lo-
cal messages differently. Local messages are not assigned
timestamps anymore and are A-Delivered directly after con-
sensus. More precisely, when some process wishes to A-
MCast a local message m to a group g, m is reliably mul-
ticast to g, as in Age. In each group of the system, we run
consensus instances to ensure agreement on the delivery or-
der of local messages, as well as to assign timestamps to
global messages as explained in Section 4.1. As soon as
a consensus instance in g decides on m, members of g A-
Deliver m.

To agree on the delivery order of global and local mes-
sages, global messages must be A-Delivered after the same
consensus instance on members of the same group. To en-
sure this property, all global messages m must go through
the four stages of Section 4.1, even in the group that pro-
posed the highest timestamp for m.

To understand why this is necessary, consider a global
message m1 and a local message m2 that are respectively
addressed to groups {g1, g2} and g1. Group g1 is the group
that assigned the highest timestamp to m1. If we allow m1
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Figure 4. Genuine versus Non-Genuine Multicast in a system with four groups.

to skip stage s2 in g1, two members p and q of g1 may A-
Deliver m1 and m2 in different orders. For example, as-
sume processes p and q define m1’s proposal timestamp in
a consensus instance k1. Then, p receives g2’s timestamp
for m1, A-Delivers m1, decides on m2 in a consensus in-
stance k2, and A-Delivers m2. However, q first decides in
consensus instance k2, deliversm2, receives g2’s timestamp
proposal for m1, and delivers m1.

Figures 4(c) and 4(d) compare the performance of Ang
to the optimized version of Age, hereafter opt-Age, in a
system with four groups. Algorithm opt-Age delivers local
messages as fast as Ang (see Figure 4(c)) but slows down
the delivery of global messages (see Figures 4(b) and 4(d)).
This phenomenon has two causes. First, all global messages
now go through the four stages, thus, an increased number
of consensus instances must be run for the same through-
put. Second, as an effect of the first cause, global messages
have a larger window of vulnerability to the convoy effect.
Hence, opt-Age is interesting only when the decrease in lo-
cal message latency it offers matters more than the increase
in global message latency.

Finally, note that the above observations underline the
benefit of allowing any global message m to skip stage s2

in the group that proposed m’s largest timestamp: under
a high load of global messages Age would deliver global
messages faster than its non-optimized counterpart [7].

6.3.2 Scalability

We now compare Ang to opt-Age when the number of
groups increases using two mixes of global and local mes-

sages. We first set the proportion of global messages to
10% and run the algorithms in a system with four and eight
groups. Figures 5(a) and 5(b) respectively report the aver-
age outgoing inter-group traffic per group and the average
A-Delivery latency, both as a function of the throughput.
For brevity we report the overall average delivery latency,
without differentiating between local and global messages.

Although Ang exhibits a better latency than opt-Age
with 4 groups, Ang does not scale as well as opt-Age with
eight groups (Figure 5(b)). This is a consequence of Ang’s
higher demand on throughput: with eight groups the algo-
rithm requires as much as 111 KBps of average inter-group
bandwidth, a value close to the maximum available capacity
of 125 KBps (Figure 5(a)).

In Figures 5(c) and 5(d), we observe that when half of the
messages are global, the two algorithms compare similarly
as above but do not scale as well.

As a final remark, we note that in contrast to Ang , opt-
Age delivers messages faster and supports more load with
eight groups than with four (Figures 5(b) and 5(d)). In-
deed, increasing the number of groups decreases the load
that each group must handle as, in our benchmark, the vast
majority of global messages are addressed to two groups.
This effect can be seen in Figures 5(a) and 5(c), where each
group needs less inter-group bandwidth with eight groups.

6.3.3 Summary

Figure 6 provides a qualitative comparison between the gen-
uine and non-genuine algorithms. We consider four scenar-
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Figure 5. The scalability of Ang and opt-Age.

ios generated by all combinations of the two following pa-
rameters: the load (high or low) and the number of groups
(many or few); the proportion of global messages is not
taken into account as it has no influence on the compari-
son. We note that Ang is the winner except when the load
is high and there are many groups.

We also carried out the same comparison in network
setup 2, i.e., a network where the message delay between
any two groups follows a normal distribution with a mean
of 20 ms and a standard deviation of 1 ms, and each group
is connected to the other groups via a 1.25MBps (10 Mbps)
full-duplex link. Due to space constraints we only briefly
comment on the obtained results. With 4 groups, opt-Age
and Ang compare similarly as in setup 1. Due to the lower
inter-group latency the performance of opt-Age becomes
closer to the one of Ang however. With eight groups, the
non-genuine protocol scales almost as well as the genuine
algorithm thanks to the extra available inter-group band-
width.

6.4 The Cost of Tolerating Disasters

To evaluate the overhead of tolerating disasters, we com-
pare Adt to the overall best-performing disaster-vulnerable
algorithm Ang . With Adt we set κ and η to 120 and 60
respectively; with Ang , the default values are used, κ = 60
and η = 30.

In Figures 7(b) and 7(d), we observe that with four
groups, Adt roughly needs twice as much time as Ang to
deliver messages. This is expected: local messages take
about the same time to be delivered with the two algorithms;

opt-Age

Ang

Number of groups

Sy
st

em
lo

ad

low
load

high
load

few
groups

many
groups

Figure 6. Comparing opt-Age to Ang .

global messages roughly need and additional 100 millisec-
onds to be delivered with Adt. Interestingly, Adt matches
the performance of Age in a system with four groups (Fig-
ures 5(b), 7(b), 5(d), and 7(d)).

With eight groups, Adt utilizes the entire inter-group
bandwidth under almost every considered load (Figures 7(a)
and 7(c)). The latency and scalability of the disaster-
tolerant algorithm thus become much worse than Ang’s.

7 Conclusion

In this paper, we surveyed and analytically compared
existing multicast algorithms. We then proposed a non-
genuine multicast algorithm that improves the latency of
known protocols by one inter-group message delay. Experi-
mental comparisons against the latency-optimal genuine al-
gorithm in [14] show that the non-genuine protocol offers
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Figure 7. The cost of tolerating disasters.

better performance except in large and highly loaded sys-
tems. To complete our study, we also evaluated a protocol
that tolerates disasters [15]. Although it does not offer the
same level of performance as the non-genuine algorithm in-
troduced in this paper, [15] matches the performance of [14]
when there are few groups.

As future work, we intend to combine the low latency of
the non-genuine algorithm with the extra scalability of [14]
in a hybrid algorithm: under low loads, the non-genuine
algorithm is used; when the load becomes too important,
and thus the latency increases drastically, processes resort
to the genuine protocol.
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