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Abstract

It has been shown that the highest throughput for broadcasting messages in a point-

to-point network is achieved with a ring topology. Although several ring-based group

communication protocols have benefited from this observation, broadcasting mes-

sages along a ring overlay may lead to high latencies: In a system with n processes, at

least n − 1 communication steps are necessary for all processes to deliver a message.

In this work, we argue that it is possible to reach optimal throughput without resort-

ing to a ring topology (or to ip-multicast, typically unavailable in wide-area networks).

This can be done by routing messages through different paths, while carefully using

the available bandwidth at each process, resulting in a significantly lower latency for

every message (potentially a single communication step). Based on this idea, we pro-

pose Ridge, a Paxos-based atomic multicast protocol where each message is initially

forwarded to a single destination, the distributor, whose responsibility is to propagate

the message to all other destinations. To utilize all bandwidth available in the sys-

tem, processes alternate in the role of distributor. By doing this, the maximum system

throughput matches that of ring-based protocols, with a latency that is not signific-

antly dependent on the size of the system. Finally, we show that Ridge can also deliver

messages optimistically, with even lower latency.
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1 Introduction

Many modern online services have strict availability and scalability requirements. Highly available ser-

vices remain operational despite node crashes and datacenter disasters. Scalable services can boost per-

formance by adding system components and thereby accommodate increased load (e.g., as a result of new

clients joining the system). However, designing highly available and scalable services is challenging. Some

approaches have responded to this challenge by weakening the service guarantees offered to the clients,

in what is generally known as weak consistency systems; some other approaches, known as strong consist-

ency systems, have considered efficient infrastructures to provide high availability and scalability without

compromising service guarantees.

Although weak consistency can lead to highly scalable and available systems, it is not applicable to all

services and when it is applicable, it may penalize the service users, who must cope with non-intuitive

service behavior. Strong consistency does not suffer from these shortcomings but requires ordering re-

quests across the system. Ordering requests in a distributed system is a challenge that has received much

attention from the scientific community [1]. While some works have focused on reducing the latency of

message ordering protocols (e.g., [2–6]), several other proposals have aimed at increasing their throughput

(e.g., [7–12]). Ridge, the protocol that we have designed and implemented, strives to achieve high through-

put without sacrificing latency, a compromise that is often present in existing high throughput total order
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protocols.

In [8], it has been shown that the maximum throughput in a point-to-point network may be achieved by

disposing processes in a ring overlay: To broadcast a message m , each process sends m to the next process

in the ring. The authors consider a system composed of n processes running in rounds. Each process can

send one message per round to any number of processes while it can receive only one message per round

(communication can be done simultaneously in both directions). Each process can also receive in a round

a message that the process sends to itself. As a consequence, the maximum throughput in messages per

round that can be achieved with a ring overlay is n/(n −1), if there are n senders, or 1, otherwise.

The prospects of achieving throughput optimality with a ring overlay have motivated the design of sev-

eral protocols such as LCR [8], Ring Paxos [10], Multi-Ring Paxos [12, 13], and Spread [14] (some of which

coupled with ip-multicast communication). All these protocols achieve very high throughput, but are sub-

ject to an inherent limitation of ring overlays: the latency to deliver messages is proportional to the number

of processes in the system. In this paper, we set out to investigate whether more latency efficient message

dissemination techniques can promise the same throughput optimality of a ring overlay. We show here that

it is possible to reach optimal throughput without resorting to a ring topology or to ip-multicast, which is

usually unavailable in wide-area networks. Based on this result, we introduce Ridge, a Paxos-based atomic

multicast protocol where each message is initially forwarded to a single destination, the distributor, whose

responsibility is to propagate the message to all other destinations. To use all bandwidth available in the

system, processes alternate in the role of distributor. As a result, Ridge’s maximum throughput matches

the throughput of ring-based protocols, with a latency that does not significantly depend on the system

size. We also show that the ideas that motivate Ridge can be combined with other optimizations to reduce

latency, such as optimistic delivery of messages.

The paper makes the following contributions: (a) we introduce Ridge, a high-throughput, latency-efficient

atomic multicast protocol; (b) we reason about Ridge’s theoretical maximum performance; (c) we provide

a detailed experimental evaluation of Ridge’s performance and compare it to the performance of other or-

dering protocols.

The remainder of the paper is structured as follows. Section 2 describes the system model. Section 3 re-

calls the Paxos protocol. Sections 4 and 5 describe Ridge and analyze its performance analytically. Section 6

assesses Ridge’s performance experimentally. Section 7 surveys related work and Section 8 concludes the

paper.

2 System model and definitions

We consider a distributed system composed of a setP = {p0, p1, ...} of processes that communicate through

message passing and do not have access to a shared memory or a global clock. Processes are either correct,

if they never fail, or faulty, otherwise. Processes, however, do not experience arbitrary behavior (i.e., no Byz-

antine failures). Processes communicate by message passing, using primitives s e nd (p , m )and r e c e i v e (m ),

where m is a message and p is the process m is addressed to. If sender and receiver are correct, then every

message sent is eventually received.

To implement atomic multicast, we make use of consensus. Consensus is defined by the primitives pro-

pose(v ) and decide(v ), where v is an arbitrary value. Consensus guarantees that (i) if a process decides v

then some process proposed v ; (ii) no two processes decide different values; and (iii) if one (or more) correct

process proposes a value then eventually some value is decided by all correct processes.

Since it is impossible to solve consensus in an asynchronous system [15], we assume that the system

is partially synchronous [16]: it is initially asynchronous and eventually becomes synchronous. The time

when the system becomes synchronous is called the Global Stabilization Time (GST) [16], and it is unknown

to the processes. Before GST, there are no bounds on the time it takes for messages to be transmitted and

actions to be executed; after GST, such bounds exist but are unknown to the processes.

3 Background

Paxos [17] is a fault-tolerant consensus algorithm and the basis for Ridge. We describe next how a value is

decided in a single consensus instance. Paxos distinguishes three roles: proposers, acceptors, and learners.

Each process can play one or more of these roles simultaneously. Proposers propose values, acceptors
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choose values, and learners learn what value was decided. Hereafter, A denotes the set of acceptors, L the

set of learners, and Q a majority quorum of acceptors, that is, a subset of A of size ⌈(|A|+1)/2⌉.

The execution of one consensus instance proceeds in a sequence of rounds, each identified by a number.

For each round, one process (typically one of the proposers) acts as coordinator of the round. To propose

a value, proposers send the value to the coordinator. The coordinator maintains two variables: (a) c-rnd is

the highest-numbered round that the coordinator has started; and (b) c-val is the value that the coordinator

has picked for round c-rnd. Acceptors maintain three variables: (a) rnd is the highest-numbered round in

which the acceptor has participated; (b) v-rnd is the highest-numbered round in which the acceptor has

cast a vote—it follows that rnd ≤ v-rnd always holds; and (c) v-val is the value voted by the acceptor in

round v-rnd.

Algorithm 1 Paxos

1: Initialization:

2: c-rnd← 0; rnd← 0; v-rnd← 0

3: c-val← null; v-val← null

4: Task 1 (coordinator)

5: when receiving value v from proposer

6: c-rnd← unique value higher than current c-rnd

7: for all acc ∈ A do send (acc, 〈PHASE 1A, c-rnd〉)

8: Task 2 (acceptor)

9: when receiving 〈PHASE 1A, c-rnd〉 from coordinator

10: if c-rnd > rnd then

11: rnd← c-rnd

12: send (coordinator, 〈PHASE 1B, rnd, v-rnd, v-val〉)

13: Task 3 (coordinator)

14: when receiving 〈PHASE 1B, rnd, v-rnd, v-val〉 from Q , such that rnd = c-rnd

15: h← highest v-rnd value received

16: V ← set of 〈v-rnd, v-val〉 received with v-rnd=h

17: if h = 0 then c-val← v

18: else c-val← the only v-val in V

19: for all acc ∈ A do send (acc, 〈PHASE 2A, c-rnd, c-val〉)

20: Task 4 (acceptor)

21: when receiving 〈PHASE 2A, c-rnd, c-val〉 from coordinator

22: if c-rnd ≥ rnd then

23: v-rnd← c-rnd

24: v-val← c-val

25: send (coordinator, 〈PHASE 2B, v-rnd, v-val〉)

26: Task 5 (coordinator)

27: when receiving 〈PHASE 2B, v-rnd, v-val〉 from Q

28: if for all received messages: v-rnd = c-rnd then

29: for all learner ∈ L do send (learner, 〈DECISION, v-val〉)

Algorithm 1 provides an overview of Paxos. The algorithm has two phases. To execute Phase 1, the

coordinator picks a round number c-rnd greater than any value it has picked so far, and sends it to the

acceptors (Task 1). Upon receiving such a message (Task 2), an acceptor checks whether the round number

received from the coordinator is greater than any round number it has received so far; if that is the case, the

acceptor “promises" not to accept any future message with a round smaller than c-rnd. The acceptor then

replies to the coordinator with the highest-numbered round in which it has cast a vote, if any, and the value

it voted for. Notice that no value is proposed to the acceptors in Phase 1.

The coordinator starts Phase 2 after receiving a reply from a quorum (Task 3). Before proposing a value

in Phase 2, the coordinator checks whether some acceptor has already cast a vote in a previous round. If

not, the coordinator can use the value received from the proposer. If one or more acceptors have cast votes

in previous rounds, the coordinator picks the value that was voted for in the highest-numbered round.

An acceptor will vote for a value c-val with corresponding round c-rnd in Phase 2 if the acceptor has

not received any Phase 1 message for a higher-numbered round (Task 4). Voting for a value means setting

the acceptor’s variables v-rnd and v-val to the values sent by the coordinator. If the acceptor votes for the

value received, it replies to the coordinator. When the coordinator receives replies from a quorum (Task 5),
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it knows that a value has been decided and notifies the learners.

Algorithm 1 can be optimized in a number of ways [17]. For instance, the coordinator can execute

Phase 1 before values are received from proposers. This way, decisions can be faster: when a proposer

sends a value to the coordinator, the coordinator can immediately start Phase 2, as Phase 1 has already been

executed. In the next section, we describe Ridge in detail, including its optimization to Paxos Phase 2.

4 Ridge

Ridge is an atomic multicast protocol that can deliver messages to groups of processes. In this section,

we define the properties ensured by Ridge (Section 4.1), describe its general idea (Section 4.2), detail its

operation (Section 4.3), explain how it tolerates failures (Section 4.4), and how it implements optimistic

delivery (Section 4.5). Correctness is discussed in Appendix A.

4.1 Problem definition

To multicast a message m to a set of groups of processes γ, primitive multicast(γ, m ) is used. Ridge per-

forms up to two deliveries for each multicast message m : deliver(m ) (atomic delivery) and opt-deliver(m )

(optimistic delivery).

The atomic delivery ensures the following properties:

(i) If a correct process multicasts m , then every correct process in γ delivers m (validity).

(ii) For any message m , every process p in γ delivers m at most once, and only if some process has mul-

ticast m previously (integrity).

(iii) If a process delivers m , then every correct process in γ delivers m (uniform agreement).

(iv) No two processes p and q deliver m and m ′ in different orders, and the delivery order is acyclic

(atomic order).

The optimistic delivery guarantees validity, integrity and the following properties:

(v) If a correct process opt-delivers m , then every correct process in γ opt-delivers m (agreement).

(iv) If the given optimistic assumptions hold, no two processes p and q deliver m and m ′ in different

orders, and the delivery order is acyclic (optimistic order).

4.2 Overview of the protocol

Ridge makes use of Paxos, executing Phase 1 similarly to Algorithm 1, while optimizing Phase 2 for high

throughput and low latency. Ridge utilizes a collection of ensembles, where an ensemble is a set of pro-

cesses capable of executing a sequence of Paxos instances. Each ensemble contains 2 f +1 acceptors, where

f is the maximum number of failures tolerated by the ensemble. For each run of Paxos, Ridge defines a

majority quorum Q with f +1 acceptors. To decide on message m in an ensemble, the ensemble’s coordin-

ator (which has previously run Phase 1 of Paxos for multiple consensus instances) starts Phase 2 by sending

m to an acceptor, which forwards it to another acceptor, and so on, until f +1 acceptors have received the

message. Unless something abnormal occurs (e.g., a failure or multiple coordinators proposing messages

in the same Paxos instance), the last acceptor (i.e., the f +1-th acceptor to receive m) will know that a ma-

jority of acceptors have received m , configuring a quorum. Then, the last acceptor sends m to a learner.

Such a learner, called the distributing learner (or distributor) for m , then sends m to all other learners dir-

ectly, completing Phase 2 of Paxos. Learners take turns as the distributing learners for different messages.

By doing this, Ridge achieves high throughput, assuming that each learner distributes the same amount of

data. To approximate this assumption, a load balancing procedure is used: the last acceptor keeps track of

how much data each learner has distributed so far and chooses the distributing learner for the next message

accordingly.

To implement atomic multicast, as described in Section 4.1, Ridge allows learners to receive messages

from different ensembles; hereafter, we denote messages decided in an ensemble a message stream. If a
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learner subscribes to multiple ensembles, a deterministic function is used to merge the corresponding mes-

sage streams, as we explain next.

To merge message streams, Ridge employs Paxos instance ids to ensure a gap-free sequence of decisions

from each ensemble. It also employs timestamps to determine the position of each message in the resulting

merged sequence. For this to be possible, each ensemble must ensure that the timestamp order of decided

messages follow the messages’ decision order (for messages of the same ensemble). More formally, let m be

a message with timestamp m .ts decided in consensus instance k by ensemble e , and let m ′ be a message

with timestamp m ′.ts decided in instance k ′ also by ensemble e . We need that, if k < k ′, then m .ts<m ′.ts.

When a message m is created, an initial timestamp is assigned to it by its sender. When m is decided and

received by a learner, it is only delivered when the learner knows that there will be no message m ′ with a

lower timestamp than that of m to be received from any ensemble the learner subscribes to. To ensure that

the timestamp order and the instance order agree for each ensemble, each learner follows a deterministic

procedure: upon delivery, if messages m and m ′ are decided in the same ensemble, k < k ′, but m .ts>m ′.ts,

then the timestamp of m ′ is adjusted to be higher than that of m , being its final timestamp. Once the learner

has determined the final timestamp of a message, it proceeds with deterministic merge. Every timestamp

is assumed to be unique across the system and the final message sequence follows the timestamp order of

the merged message streams.

The way Ridge merges multiple message sequences raises a liveness concern: what if a learner never

receives a message from one of the ensembles it subscribes to (i.e., because no process multicasts a message

to this ensemble)? To ensure liveness, Ridge uses null messages: if no message is multicast to an ensemble

for a predefined time∆, the coordinator of the ensemble generates a null message (i.e., a message with no

payload), with the sole purpose of preventing learners from blocking while waiting for ensembles with low

or no traffic.

Finally, in Ridge processes can propagate a message to a single ensemble only, which is at odds with

the definition of atomic multicast, where a message can be multicast to multiple groups. To implement the

abstraction of groups, Ridge maps groups to ensembles, as we describe next. Suppose a system in which

messages can be multicast to any combination of groups g1, ..., gn . This abstraction can be implemented in

Ridge with n+1 ensembles, e1, ..., en , eall. For every group g i that contains process p , p becomes a learner of

ensembles ei and eall. If m is multicast to a single group g i , it is propagated to ei ; if m is multicast to multiple

groups, it is sent to eall, with non-addressee processes simply discarding m—that is, the ensemble’s learners

that have not subscribed to any of the groups that m was multicast to will just disregard m .

4.3 Detailed algorithms

We detail here the algorithms executed during normal operation, i.e., when there are no failures or failure

suspicions; we discuss abnormal cases in Section 4.4. Algorithm 2 shows how Ridge optimizes Paxos Phase 2

for both throughput and latency (unchanged code from original Paxos is grayed out). For Algorithm 3,

which details Ridge’s deterministic merge procedure, we assume that each ensemble uses consensus as a

black box, with primitives proposee (k , v ) and decidee (k , v ) to respectively propose and decide a value v for

consensus instance k of ensemble e . Finally, Algorithm 4 shows a simple way of mapping Paxos ensembles

to multicast groups, allowing messages to be multicast to multiple process groups.

To solve consensus in Ridge, we assume that each ensemble eventually has a single and correct co-

ordinator [17]. To execute Phase 1 (Task 1), the coordinator defines a quorum Q for the proposed round of

Paxos containing a majority of the acceptors in A, arranged in a sequence a1; a2; . . . ; a( f +1). When starting

Phase 2 of Paxos (Task 2), the coordinator sends message 〈PHASE 2, c-rnd, c-val, Q , 0〉 to acceptor a1. This

tuple means that it is a message concerning Phase 2 of Paxos, for round c-rnd, proposing value c-val, the

acceptor sequence in Q is the quorum, and no votes have been cast by the acceptors yet.

Upon receiving a message 〈PHASE 2, c-rnd, c-val, Q , count〉 (Task 4), acceptor ai knows that count votes

have been cast so far to decide value c-val in consensus. If the number of votes, plus ai ’s own vote, is

still not enough to reach a quorum, ai increments the vote count and forwards the message to the next

acceptor in Q , a(i+1). When the |Q | votes necessary to decide c-val have been cast, the acceptor that com-

pleted the quorum will choose a distributing learner and ask for it to distribute the value decided to the

other learners (Task 5). We want to divide equally the amount of data distributed by each of the learners.

For simplicity, Algorithm 2 assumes that all learners are chosen uniformly by the last acceptor to be the

distributors and that all messages have the same size. Ridge’s actual implementation uses a load balancer

at each acceptor to help choose distributing learners.
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Algorithm 2 Ridge: executing Paxos in one ensemble

1: Initialization:

2: c-rnd← 0; rnd← 0; v-rnd← 0

3: c-val← null; v-val← null

4: Task 1 (coordinator)

5: when receiving value v from proposer

6: c-rnd← unique value higher than current c-rnd

7: // define a quorum Q as an acceptor sequence for round c-rnd

8: Q ←{a1, a2, . . . , a( f +1)} //majority of the 2 f +1 acceptors

9: for all acc ∈ A do send (acc, 〈PHASE 1A, c-rnd〉)

10: Task 2 (acceptor)

11: when receiving 〈PHASE 1A, c-rnd〉 from coordinator

12: if c-rnd > rnd then

13: rnd← c-rnd

14: send (coordinator, 〈PHASE 1B, rnd, v-rnd, v-val〉)

15: Task 3 (coordinator)

16: when receiving 〈PHASE 1B, rnd, v-rnd, v-val〉 from Q , such that rnd = c-rnd

17: h← highest v-rnd value received

18: V ← set of 〈v-rnd, v-val〉 received with v-rnd=h

19: if h = 0 then c-val← v

20: else c-val← the only v-val in V

21: send (acceptor a1, 〈PHASE 2, c-rnd, c-val, Q , 0〉)

22: Task 4 (acceptor ai )

23: when receiving 〈PHASE 2, c-rnd, c-val, Q , count〉

24: if c-rnd ≥ rnd then

25: v-rnd← c-rnd

26: v-val← c-val

27: if count +1< |Q | then

28: send (a(i+1), 〈PHASE 2, v-rnd, v-val, Q , count+1〉)

29: else

30: for all l ∈ L do send (l , 〈DECISION, id(v-val)〉)

31: ld ← a learner in L \Q

32: send (ld , 〈DISTRIBUTE, v-val〉)

33: Task 5 (learner)

34: when receiving 〈DISTRIBUTE, v-val〉

35: for all l ∈ L \Q do send (l , 〈VALUE, v-val〉)

It is possible that some of the learners are also acceptors in the majority quorum Q . An acceptor from Q

should not be a distributing learner, as such an acceptor already receives and forwards proposed values (in

Task 4). Adding the burden of distributing decided values would likely overload the acceptor and defeat the

purpose of Ridge, which is to maximize throughput. For this reason, the distributing learner is chosen from

L \Q . For learners in Q , which in normal cases have already received the value decided, to be notified about

decisions, two separate messages are sent: VALUE, which contains the decided value v-val, and DECISION,

which contains only id(v-val), a unique identifier of v-val. The last acceptor of Q sends DECISION to all

learners, while the distributing learner sends VALUE only to learners that haven’t received v-val yet. By

doing this, and assuming that the size of id(v-val) is negligible, Ridge’s throughput efficiency is maintained

even when processes are both learners and acceptors.

Ridge implements atomic multicast with the help of an intermediate layer, called ensemble-multicast,

which allows processes do deterministically merge messages decided in multiple ensembles. If we con-

sider the set of learners of each ensemble as an ensemble-group, the properties of ensemble-multicast (i.e.,

ensemble-delivery) are the ones of atomic multicast, described in Section 4.1, except that each message can

be ensemble-multicast to only one single ensemble-group.

Algorithm 3 shows how ensemble-multicast operates. To multicast a message m to an ensemble-group

of learners of ensemble e , the proposer p first assigns a unique timestamp m .ts to m , which is based on p ’s

system clock. Then, p sends m to e ’s coordinator (lines 2–4). Upon receiving m , the coordinator proceeds

with proposing m in the next consensus instance k (lines 10 and 11). When a learner becomes aware that m
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is the next decided message in ensemble e (line 30), it checks if m has a timestamp higher than last_tse (the

timestamp of the last message from e ); if not, m .ts is adjusted to last_tse + 1, ensuring that the timestamp

and instance id orders agree in every ensemble. After checking this, the learner sets last_tse to m .ts and puts

〈e , m〉 in a queue to be delivered when possible (lines 31–35). This queue contains a gap-free sequence of

decisions from each ensemble; ke is incremented each time a decision is received from an ensemble e ,

ensuring that the learner will be notified about decisions from e in the correct order (line 36).

When the gap_free queue contains at least one decision from every ensemble the learner subscribes to,

the learner removes the message with lowest timestamp from queue and ensemble-delivers it (lines 37–41).

This can be done because the learner processes consensus decisions from each ensemble in order; since

final timestamps are adjusted to agree with the consensus decision order, any new decisions will contain a

message with higher timestamp.

Algorithm 3 also shows how Ridge ensures liveness. At the initialization, and whenever a proposal is

made, a timer is set to expire in ∆ time units (lines 8, 13 and 19). This makes sure that, if a learner has a

message m enqueued for delivery, it will eventually be able to deliver it, because it will receive messages

with increasing timestamps from every ensemble at least every∆ (line 37).

Finally, Algorithm 4 shows how Ridge implements atomic multicast on top of ensemble-multicast. The

ensemble-multicast protocol does not allow a message to be multicast to multiple ensembles. To allow

each message to be multicast to multiple groups, we can have an ensemble eγ for each combination γ of

destination groups. If a message is multicast to γ, then it is implemented as an ensemble-multicast to eγ.

To avoid requiring 2n ensembles to accommodate all possible combinations of up to n groups, we decided

to have n+1 ensembles: if a message m is multicast only to g i , then it is ensemble-multicast to ei ; if m is

multicast to multiple groups, it is ensemble-multicast to eall (lines 4–7). Using this simple mapping, m will

be ensemble-delivered by all processes if it has been multicast to more than one group; for this reason, m

receives a tag m .dests that contains m ’s actual destination groups (line 3). Upon ensemble-delivery of m ,

each process p checks if m is actually addressed to p , by comparing the set of m ’s destination groups with

the setσ of groups that p subscribed to; if that is the case, m is delivered to p .

4.4 Tolerating failures

Each Ridge ensemble is an implementation of Paxos, so leader election, failure detection and fault-tolerance

is handled in the same way as the original protocol. What changes is the way messages are routed. Because

of that, Ridge is sensitive not only to the failure of the coordinator, but also to the failure of the acceptors in

Q and to the failure of distributing learners.

4.4.1 Coordinator failure

If the coordinator is suspected of failing, another process will take its place, by (eventually) running Phase 1

of Paxos with a round number higher than that used by the suspected coordinator [17].

4.4.2 Acceptor failure

In case the coordinator suspects that an acceptor of Q has failed during the execution of a consensus in-

stance k , the coordinator falls back to original Paxos (Algorithm 1). It re-executes the consensus instance

k , including Phase 1 and Phase 2 of original Paxos, with a higher round number.

4.4.3 Learner failure

If the last acceptor ofQ suspects of a failure of the distributing learner, the acceptor will forward the message

to a different learner. In any case, learner failures may cause other learners not to receive some consensus

decisions. When suspecting that decisions were not received, learners can check with the acceptors what

has been decided so far and fill any possible gaps.

4.5 Optimistic deliveries

Ridge allows messages to be delivered optimistically, with the optimistic order likely matching the atomic

order. For this purpose, Ridge uses a scheme similar to that of [6], making the following assumptions:

(a) there are no message losses, (b) messages from each ensemble are decided in the order of their initial
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Algorithm 3 Ensemble-multicast with deterministic merging

1: Task 1 (proposer)

2: To ensemble-multicast message m to ensemble e

3: m .ts← unique timestamp based on local clock

4: send m to the coordinator of e

5: Task 2 (coordinator of ensemble e)

6: Initialization:

7: k ← 0

8: set timer to expire in∆

9: when receiving m from a proposer

10: proposee (k , m )

11: k ← k +1

12: stop timer

13: set timer to expire in∆

14: when timer expires

15: create empty null message

16: null.ts← unique timestamp based on local clock

17: proposee (k , null)

18: k ← k +1

19: set timer to expire in∆

20: Task 3 (acceptor)

21: execute consensus (follow Algorithm 2)

22: Task 4 (learner)

23: Initialization

24: ∀e : ke ← 0

25: ∀e : last_tse ← 0

26: all_decisions←;

27: gap_free←;

28: when decidee (k , m )

29: all_decisions← all_decisions∪{〈e , k , m〉}

30: when ∃e : 〈e , ke , m〉 ∈ all_decisions

31: if m .ts< last_tse then

32: m .ts← last_tse +1

33: last_tse ←m .ts

34: all_decisions← all_decisions \ {〈e , ke , m〉}

35: gap_free← gap_free∪{〈e , m〉}

36: ke ← ke +1

37: when ∀e : l receives from e , ∃m : 〈e , m〉 ∈ gap_free

38: take 〈ed , md 〉, where md .ts is the lowest in gap_free

39: gap_free← gap_free \ {〈ed , md 〉}

40: if md 6= null then

41: ensemble-deliver(md )

timestamps (thus their final timestamps will be the same as their initial ones) and (c) when a learner deliv-

ers a message m optimistically, it has already received all messages that could possibly have a timestamp

lower than that of m .

Condition (a) is approximated with a reliable communication protocol (e.g., TCP). We satisfy conditions

(b) and (c) by having each process wait “long enough" before proposing a message or delivering a message

optimistically. In the case of (b), the coordinator waits for a certain amount of time before proposing mes-

sages, allowing messages received out of order to be proposed in the correct (initial timestamp) order; as

for (c), the wait time allows the learner to deliver optimistically in the correct order.

To perform optimistic deliveries, when a process p ensemble-multicasts a message m to an ensemble

e , p first sends1 m directly to all learners of e . After receiving m directly from p , each learner delivers

m optimistically after waiting a certain time, which is based on the estimated latency and clock skews of

1To ensure that the value was received, the process multicasting m uses reliable multicast [18] to send the value to the learners and

to the coordinator.
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Algorithm 4 Ridge - multicasting messages to multiple groups

1: Task 1 (multicaster)

2: To multicast m to set of groups γ

3: m .dests← γ

4: if |γ|= 1∧γ= {g i } then

5: ensemble-multicast m to ei

6: else

7: ensemble-multicast m to eall

8: Task 2 (destination)

9: Initialization

10: destination p subscribes to set of groupsσ

11: for each g i ∈σ do

12: become a learner of ensemble ei

13: if |σ|> 1 then

14: become a learner of ensemble eall

15: when ensemble-deliver m

16: if m .dests∩σ 6= ; then

17: deliver(m)

the system. Besides sending m to the learners, p sends m also to the coordinator of e , which proceeds

with Phase 2 of Paxos for m . Once the ( f +1)-th acceptor is reached, it only notifies the learners about the

decision, by sending id(m) to them. At this point, learners are expected to have already received m directly

from p ; if that is the case, they can deliver m atomically. If a learner still hasn’t received m when receiving

id(m), the learner asks the acceptors for m . Note that the optimistic delivery does not guarantee uniformity:

if both p and a learner l f are faulty, it is possible that l f delivers m optimistically, when no other process

delivers m . However, this does not affect the correctness of the atomic delivery.

5 Theoretical analysis

In this section, we show that Ridge achieves high throughput in a point-to-point network. We first describe

the performance model used here, then show that having a distributor for each different message can lead

to optimal throughput, and then explain why it achieves low latency.

5.1 Performance model

Our performance model is based on the one used in [7] and [8]. In that model, each process can send one

message per round and receive one message per round: if a single process p sends one message to a des-

tination q , it will take a single round for q to receive the message. Likewise, if q has n messages to receive, it

will finish receiving after n rounds. Although this is a very good model for throughput, it predicts latency as

a function of throughput, which is not always realistic. For instance, in a 1 Gbps network with 50µs average

latency, a process can send up to 125 megabytes per second, or approximately 125 bytes per microsecond.

If we consider 125-byte messages, the round length (time necessary to send one message) would be 1 µs.

This model predicts that the message would take only 1 round (1 µs) to arrive at the destination. However,

in reality it would take around 50 µs (or 50 rounds) in such a network.

We extend this performance model to decouple latency from throughput, defining the following. At

each round k , every process can send only one message (we assume that the underlying network provides

only one-to-one communication) and can also receive only one message. We define δ as the latency, in

number of rounds, for a message to arrive from a process p at a process q , where δ > 0. In more detail, at

each round k , every process pi can execute all or a subset of the following steps:

(1) compute a message for round k , m (i , k ),

(2) send m (i , k ) to one process,

(3) receive at most one message sent at round k −δ.
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5.2 Throughput

We consider a system with n processes: p0, p1, ..., p(n−1). To simplify the explanation, let p(i mod n ) be pi , so

pn represents the same process as p0, p(n+1) refers to p1, and so on. Say all processes are broadcasting a

message at the same time. Each process pi is broadcasting mi to p0, ..., p(n−1). At the beginning, process pi

already has its own message mi , so at round 1, each pi sends mi to p(i+1); at round 2, pi sends mi to p(i+2),

and so on. At the (n − 1)-th round, pi will send mi to the last destination p(i+n−1). So, we have that, after

n−1 rounds, the n processes will have each finished sending their messages to all n destinations, resulting

in a throughput of n/(n − 1)messages per round. This shows that each process sending its own message

directly to all other processes achieves the optimal throughput found in [8].

In the case of Ridge, we assume that Phase 1 of Paxos was pre-executed, so we focus on Phase 2. We

consider that all n processes in the system are learners, so L = {p0, p1, ..., p(n−1)}. For this analysis, we also

assume that no failures happen nor are suspected to happen, so the majority quorum Q = {a1, a2, ..., a( f +1)}

never changes, where a1 is the coordinator. We show that, if the coordinator a1 proposes one message

per round, the throughput of the system is one message decided per round, which is the maximum rate

of messages any process can receive from the network. With Ridge, Paxos Phase 2 is executed by having

each acceptor ai , where 1≤ i ≤ f , receive one message m at each round and forward it to a(i+1), along with

i d (m ). Acceptor a( f +1) then sends m to ld , which is a learner picked from L \Q at random (following a

uniform distribution). Process ld sends the message |L \Q | times, one for each of the remaining learners

that have not received the message yet.2 Each learner in L \Q is chosen to be a distributor 1/|L \Q | times,

so each learner sends one message per round on average. As every process receives one message and sends

one message per round, we conclude that the throughput of the system is one message decided per round.

5.3 Latency

Note that, following our modified performance model, the theoretical analysis of maximum system through-

put using a ring and using a different process as distributor for each message remain both as n/(n−1)mes-

sages per round. The theoretical latency, though, is different. In the case of a ring, the first process after the

sender pi in the ring will receive mi after δ rounds, while the last process in the ring will receive mi after

δ(n − 1), which is the time necessary to complete the broadcast. When using distributors, each process pi

sends its message mi to all others, one destination after the other, in n−1 rounds. The first destination, p(i+1)

will receive mi in δ rounds. Process p(i+2), in δ+ 1, and so on. The last destination, p(i+n−1), will receive mi

in δ+n −2 rounds, which is the time needed to finish the broadcast. (This means a single communication

step if we consider only the network latency between processes, i.e., if we assume that the time necessary

to send a message is negligible.)

To give an example, suppose a wide-area system with 100 processes, where each has a 1 megabyte/s

connection, both for sending and receiving, in full-duplex. The average latency of the system is 100 ms and

every message has 1 kilobyte length. Following our model, n is 100, the round length is 1 ms (since each

process can send roughly one thousand messages per second), and δ is 100 rounds. Using distributors, we

have latency δ+n −2= 100+100−2= 198 ms. Using a ring, we would have δ(n − 1) = 100× (100− 1) =

9900 ms.

With Ridge, it takes |Q |δ rounds for a message to pass through all the acceptors in the quorum Q and

arrive at the distributing learner. From that point on, the learners in L \Q (i.e., the learners that are not

acceptors inQ ) take turns being the distributor, so (δ+|L\Q |−2) extra rounds are necessary for all remaining

processes to receive the message. Therefore, the latency of Ridge is: (|Q |+1)δ+ |L \Q | −2.3

6 Performance evaluation

We present here the results of experiments with Ridge, (Multi-)Ring Paxos [10,12], LibPaxos4 and Spread [14].

In Section 6.1, we detail the environment used and the parameters given to the different protocols. In Sec-

tion 6.2, we show the results for broadcast (i.e., multicast with a single group). In Section 6.3, we show how

2Since ld already has the message, it only sends it |L \Q | − 1 times, but it is simpler to approximate to |L \Q |. On the other hand,

a( f +1) sends i d (m ) to all |L | learners of the system, letting them know that m was decided, but we consider that the size of i d (m ) is

negligible.
3If learners are delivering messages from multiple ensembles, it may be necessary to wait for ∆ (maximum time between two

consecutive null messages) more rounds.
4https://bitbucket.org/sciascid/libpaxos
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Figure 1: Throughput (maximum) and latency (with the system at maximum power) as the number of destinations

increases. In the left-side graphs, bars and dashes represent the 95th percentile and average latency values, respectively.

throughput scales with the number of multicast groups, for each protocol. Finally, in Section 6.4, we show

results for optimistic deliveries.

6.1 Environment setup and configuration parameters

We conducted all experiments on a cluster that had two types of nodes: (a) HP SE1102 nodes, equipped

with two Intel Xeon L5420 processors running at 2.5 GHz and with 8 GB of main memory, and (b) Dell

SC1435 nodes, equipped with two AMD Opteron 2212 processors running at 2.0 GHz and with 4 GB of

main memory. The HP nodes were connected to an HP ProCurve 2920-48G gigabit network switch, and

the Dell nodes were connected to another, identical switch. Those switches were interconnected by a 20

Gbps link. The average round-trip latency measured with ping was 133 µs. All nodes ran CentOS Linux

6.5 with kernel 2.6.32 and had the Oracle Java SE Runtime Environment 8. Clocks were kept synchronized

with NTP for better results with Ridge and Multi-Ring Paxos with multiple groups and to collect consistent

measurements from different processes in the system.

In all our experiments, there are clients and servers: each client multicasts a message to a group of serv-

ers, receives a reply from one of the servers, then sends another message, and so on. In all experiments with

Paxos-based protocols, each Paxos group had 3 acceptors, with in-memory storage. One of such acceptors

was also a proposer acting as coordinator and the servers were pure learners (i.e., being neither acceptors

nor proposers). Each client message was sent to a coordinator, which proposed the message in the next

consensus instance. In the case of Multi-Ring Paxos, we used a scheme similar to that of Ridge: there was

a ring ri for each multicast group g i and a ring rall for messages for multiple groups. Each process sub-

scribing to messages from g i would learn decision from ri and rall. Null and skip messages were sent every

∆= 1 ms. LibPaxos implements Paxos in C. In LibPaxos, the coordinator sends each proposal directly to all

acceptors, which then send their Phase 2B messages directly to the the learners. Upon receiving a Phase 2B

message from a majority of acceptors, the learners declare the value as decided. This is done to minimize

latency, although it may be detrimental to the maximum throughput. All Paxos-based protocols used TCP

for communication.

As a reference, we included experiments with Spread [14], version 4.4.0. In our Spread deployments,

each server had a local Spread daemon, and all daemons belonged to the same Spread segment (within

a segment, daemons are arranged in a ring and send message payloads using ip-multicast). Each server

joined one multicast group and had clients connected to it. The message service type used was “safe”.

6.2 Broadcast results: performance vs. number of destinations

We show here the results of experiments with a single multicast group (i.e., broadcast). The throughput we

report is the maximum, which we find by increasing the system load as long as the throughput increases.

To report latency, we look for the load that leads the system to its maximum power, which we define as
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the ratio between throughput and latency. As load increases, power tends to increase as well, until latency

increases faster than throughput, indicating that the system is overloaded and that latency values are no

longer reliable.

Ridge has roughly the same throughput achieved by Ring Paxos. Figure 1 (left) shows that, for 64 kB

messages, both algorithms reach 0.8 Gbps in a 1 Gbps network, with very little variation as the number of

destinations increases. This comes from the fact that both algorithms use throughput-optimal dissemina-

tion techniques: a ring (Ring Paxos) and alternating distributors (Ridge). For 8 kB and 200 B messages, there

is a throughput drop as the number of destinations increases. LibPaxos, which is implemented in C and is

optimized for latency in detriment of throughput, has the lowest throughput of all algorithms, except for

very small messages, where CPU is more likely to be the bottleneck than network. Spread uses ip-multicast

for disseminating messages, having a somewhat constant throughput of 0.4–0.5 Gbps for 64 kB and 8 kB

messages, and around 40 Mbps for 200 B messages. With 64 kB messages and a single destination, Spread

had the same 0.8 Gbps throughput of Ridge. This is a special case for Spread, as there is a single server, i.e.,

a ring with a single Spread daemon.

Figure 1 (right) shows latency results. Bars and dashes represent the 95th percentile and average laten-

cies, respectively. Among the protocols that use Paxos, LibPaxos had the lowest latency in most cases.

However, Ridge’s latency was comparable to that of LibPaxos. The latency of Spread was not as sensitive

to message size as the latency of the other protocols tested, since Spread uses ip-multicast to disseminate

payloads. Still, Ridge has lower latency than Spread in many cases. This happens because Spread uses a

ring topology: although it uses ip-multicast to disseminate the payload of each message, such message can

only be safely delivered after relevant data has traversed the whole ring.

6.3 Multicast results: performance vs. number of groups

In this section, we show how throughput scales with the number of groups in the system. In our experi-

ments, each group had four servers, and each message was sent to a single group. Ideally, the aggregate

throughput would scale linearly with the number of groups. We do not show multicast results for LibPaxos

because it only offers a broadcast API (by means of consensus with Paxos).

Figure 2 (left) shows the scalability of maximum throughput for each protocol, while latency is reported

on Figure 2 (right). The maximum throughput of each protocol is normalized by its absolute value with

a single group, which is shown in the graph. We can see that both Ridge and Multi-Ring Paxos have very

similar throughput scalability in all cases. This is expected, since both algorithms use one separate group

of Paxos acceptors for each multicast group. By doing this, these protocols are able to scale the aggregate

throughput by adding independent sets of Paxos acceptors. This scheme allows Ridge and Multi-Ring Paxos

to have nearly ideal scalability for 64 kB messages. Ridge’s throughput scaled 8 times, proportionally to the

number of groups. These algorithms had good scalability for 8 kB and 200 B messages, with throughput

scaling 4 times with 8 groups. Spread uses a single ring for all servers in the system, even if they subscribe

to different groups. Because of that, network was a bottleneck and Spread’s throughput did not scale much

beyond 0.5 Gbps with 64 kB and 8 kB messages. This result is similar to what Spread achieved for broad-

cast with multiple destinations (here, each group has four destinations). Spread scaled better with small

messages, as network was likely not the bottleneck, and having more groups allowed Spread’s throughput

to increase.

6.4 Results for optimistic deliveries

We also benchmarked Ridge with optimistic deliveries enabled. We had a number of clients sending 64 kB

messages to a multicast group, where a server delivered messages both atomically and optimistically, com-

paring the sequences. A mistake happened when the i -th atomic delivery in the server did not match the

i -th optimistic delivery. The results we found are displayed in Figure 3, where we show mistakes as a per-

centage of the optimistic deliveries. We also highlight the load with which the system had maximum power,

i.e., the maximum ratio between throughput and latency (of the atomic delivery).

Figure 3 (top) shows that the optimistic delivery has significantly lower latency than the conservative

delivery, and this difference tends to increase with the load on the system. This happens because each

message is delivered optimistically after being received directly from its origin, while the atomic delivery of

a message only happens after the message has been decided in consensus. In Figure 3 (bottom), we can see

that the rate of mistakes tends to increase with the load, which is expected: more messages lead to higher
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chance of out-of-order optimistic deliveries. However, even with the system heavily loaded, the percentage

of mistakes never reached 3%.

We can see that delivering every message twice did not hurt throughput. Ridge’s maximum throughput

of 0.8 Gbps was the same found previously (Section 6.2) without optimistic deliveries. With optimistic de-

liveries enabled, Ridge relies on the process multicasting a message to send (with reliable multicast [18])

the actual message payload to each Paxos learner directly. This is done to create a route that bypasses

consensus, allowing optimistic deliveries to happen. When this happens, the acceptors do not send the

message payload to the learners, but only its id, so that the learners do not waste downstream bandwidth

to receive the same message twice. Although each individual client sends messages multiple times (to the

learners directly, then to the Paxos coordinator), the throughput of the system remains unaltered.

7 Related work

In [8], the authors proved that ring topologies allow systems to achieve optimal throughput. Some protocols

that benefit from such topologies are LCR [8], Totem [19], Spread [14] and Ring Paxos [10]. LCR arranges

processes in a ring and uses vector clocks to ensure total order. One disadvantage of LCR in comparison

to Ridge is that it requires perfect failure detection: suspecting that a correct process failed is not tolerated.

Totem is a ring-based protocol based on Transis [20] that provides total order for messages. Spread, which

is based on Totem, relies on daemons interconnected as a ring to order messages, while message payloads

are disseminated using ip-multicast. Finally, Ring-Paxos deploys Paxos [17] processes in a ring to maximize

throughput. A problem of all such ring-based protocols is that their latency is proportional to the size of the
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system times the network point-to-point latency. S-Paxos [11] is an atomic broadcast protocol that achieves

high throughput by offloading the coordinator. Unlike Ridge, S-Paxos does not implement atomic multicast

and does not optimize for latency.

Skeen’s algorithm (presented in [21]) is possibly the first atomic multicast algorithm. Even though it is

not fault-tolerant, it is genuine: processes communicate only if they actually have application messages to

exchange [22]. In Skeen’s algorithm, the destination processes of a message m exchange timestamps and

eventually decide on m ’s final timestamp. Messages are then delivered based on their final timestamps.

Several extensions have been proposed to Skeen’s protocol, aiming to provide fault-tolerance [22–25]. The

basic idea of such extensions is to replace each process with a fault-tolerant group of processes that act as

one single entity by means of consensus, as in state-machine replication [26].

Multi-Ring Paxos [12, 13] achieves very high throughput by increasing the number of multicast groups.

Each group uses Ring Paxos to solve consensus and message streams from different groups are merged as

proposed in [27]. Ridge also uses Paxos and deterministic merge, but it does not use a ring overlay. Instead,

Ridge employs alternating distributors, being also capable of reaching very high throughput. Multi-Ring

Paxos merges messages from multiple rings in a round-robin fashion, assuming that all rings produce the

same number λ of decisions per time unit; if a ring does not have enough application messages to reach

λ, skip-messages are created. If a ring produces more than λ decisions per time unit, performance likely

deteriorates. Ridge’s merge function is different, using timestamps taken from the processes’ system clocks;

these timestamps are also used to deliver messages optimistically. The merge functions of both Ridge and

Multi-Ring Paxos are sensitive to clock synchronization: the better the clocks are synchronized, the lower

is the average latency. Moreover, both the theoretical analysis and our experiments show that Ridge has

throughput similar to that of Multi-Ring Paxos, with significantly lower latency for the atomic delivery, and

even lower latency for the optimistic delivery.

Regarding optimistic deliveries, optimistic atomic broadcast [5] relies on messages being spontaneously

delivered through the network in the same order at all destinations. If this doesn’t happen, the algorithm

runs consensus to ensure that a final, totally-ordered delivery is also done. In [28], the authors propose a

technique that approximates spontaneous ordering in a wide-area setting. The idea is for each process to

insert artificial delays in incoming messages, so that the resulting artificial latency between each process

and a given sequencer is the same. Fast Paxos [29] allows messages to be sent directly to the acceptors

(bypassing the coordinator), saving time. However, if the acceptors receive those messages in different

orders, classic Paxos is run to ensure total order. In [6], the authors propose an optimistic atomic multicast

algorithm. Such algorithm is quasi-genuine, in the sense that processes only communicate if they “are

able to" multicast messages to each other. The system’s configuration determines which processes can

communicate with one another, and the configuration can change dynamically. Such optimistic atomic

multicast protocol does not optimize throughput, unlike Ridge.

8 Conclusion

This work introduces Ridge, an atomic multicast protocol that combines high throughput, low latency,

scalability and optimistic deliveries. Unlike previous works, it achieves such high throughput without re-

sorting to ring topologies nor to ip-multicast. Instead, Ridge makes use of alternating distributors, which is

a technique capable in theory of achieving optimal throughput, while having lower latency than a ring. We

conducted a number of experiments that prove that this also holds in practice, with different numbers of

destinations and multicast groups. Finally, we demonstrate that enabling optimistic deliveries allows mes-

sages to be delivered faster with even lower latency than that of the atomic delivery. Despite the fact that

each message is sent through different routes and delivered twice, enabling optimistic deliveries does not

reduce the maximum throughput of the system.
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Appendix

A Correctness Proof (Sketch)

As described in Section 2, we assume a partially synchronous system: it is initially asynchronous and even-

tually becomes synchronous. The time when the system becomes synchronous is called GST (Global Sta-

bilization Time). Before GST, there are no bounds on message delay or relative process speed. After GST,

such bounds exist but are unknown. We assume that after GST, all remaining processes are correct.

A.1 Consensus

We provide here a proof sketch for the correctness of Ridge. We prove that the optimized version of Paxos

proposed here (Algorithm 2) ensures properties (ii) and (iii) of consensus. Property (i) holds trivially from

the algorithm.

Proposition 1. (ii) No two processes decide different values.

Proof sketch. Let v and v ′ be two decided values, with unique identifiers id(v ) and id(v ′), and proposed by

coordinators c and c ′, respectively. We prove that id(v )= id(v ′).

Let r be the round, with quorum Q , in which some acceptor a sent a DECISION message with id(v ) to

all learners, and let r ′ be the round, with quorum Q ′, in which some acceptor a ′ sent a DECISION message

with id(v ′) to all learners.

In Ridge, a sends the DECISION message with id(v ) after: (a) c receives f +1 messages of the form

〈PHASE 1B, r , *, *〉; (b) c selects value v-val = v with the highest round number v-rnd among the set M1B

of PHASE 1B messages received, or picking a value v-val if v-rnd = 0; (c) f +1 different acceptors (a majority

of the acceptors) have cast a vote for value v in round r .

When acceptor a receives a message of the form 〈PHASE 2, r, v,Q , f 〉, it is equivalent to a receiving a

message 〈PHASE 2B, r, v 〉 (as in Algorithm 1) from f other acceptors. That’s because each acceptor forwards

a message of form 〈PHASE 2, r, v,Q , count〉 to the next acceptor in Q only if r is higher than or equal to the

previous v-rnd held by that acceptor. If a also casts a vote for 〈r, v 〉, this is equivalent to a sending a message

〈PHASE 2, r, v,Q , f + 1〉 to itself, so a knows that v was decided in round r , equivalently to coordinator c

receiving f +1 〈PHASE 2B, r, v 〉 messages in the original Paxos algorithm. That’s why a can safely send a

〈DECISION, id(v )〉 message to all learners. Let M2B be the set of such equivalent f +1 Phase 2B messages.

Now consider a system running original Paxos where the coordinator c received the same sets of messages

M1B and M2B . In this case, c would send a DECIDE message with id(v ) as well. Since the same reasoning

can be applied to coordinator c ′, and Paxos implements consensus, we have that id(v )= id(v ′).

Proposition 2. (iii) If one (or more) correct process proposes a value then eventually some value is decided by

all correct processes.

Proof sketch. After GST, processes eventually select a correct coordinator c . Coordinator c considers a

quorum Q of acceptors, and c sends a Phase 1A message to all acceptors in the ensemble. If all acceptors

in the majority quorum Q are correct and c does not suspect that any of them has failed, then all messages

exchanged between coordinator and acceptors in Q are received and all correct processes eventually de-

cide some value. If c suspects that any acceptor in Q has failed, the protocol falls back to the original Paxos

algorithm, which guarantees property (iii) of consensus. If any acceptor a f in Q has in fact failed, c even-

tually suspects that a f has failed. The weakest failure detector ⋄W [30] is enough to provide this guarantee:

There is a time after which every process pf that crashes is always suspected by some correct process ps .

Process ps then sends to c a notification n f that pf is suspected of failing. Since both ps and c are correct

after GST, n f is received by c .

A.2 Atomic multicast

The following applies to Algorithm 3 and can be trivially extended to Algorithm 4.

Lemma 1. Let t be a timestamp, and ǫ a set of ensembles. Each correct process p that is a learner in every

ensemble e ∈ ǫ eventually decides a message m : m .ts> t , where m was decided by e , for every e ∈ ǫ.
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Proof sketch. Each ensemble e ∈ ǫ eventually elects a correct coordinator c after GST and proposes mes-

sages (possibly null) at least every∆ time units. Decided messages from an ensemble are assigned mono-

tonically increasing final timestamps, so p eventually decides a message m such that m .ts > t , for every

ensemble e in ǫ.

Proposition 3. (VALIDITY) If a correct process multicasts m, then every correct process in γ delivers m.

Proof sketch. To multicast m , a correct process p sends m to the coordinator c of an ensemble e , and p

keeps sending m until it reaches reaches the correct coordinator. After GST, a correct process c is eventu-

ally elected as coordinator of e . Since both p and c are correct, c delivers m and proposes it. From the

properties of consensus, all correct learners of e decide m . Therefore, and from Lemma 1, l eventually

delivers m .

Proposition 4. (INTEGRITY) For any message m, every process p in γ delivers m at most once, and only if

some process has multicast m previously.

Proof sketch. For m to be delivered, it must have been proposed by the coordinator c of an ensemble e .

The proof that m was multicast by some process is immediate from Algorithm 3: c only proposes m after

receiving m from a process q that multicast m . After GST, e will eventually have a correct coordinator c , so

proving that m is delivered only once is also obvious from the algorithm: c proposes m only once in some

consensus instance k . After deciding m , learner p of e eventually delivers m (from Lemma 1).

Proposition 5. (UNIFORM AGREEMENT) If a process delivers m, then every correct process in γ delivers m.

Proof sketch. For a process p , which subscribes to a set of ensembles ǫ, to deliver a message m , p must be a

learner that decided m after m was accepted by a majority of acceptors in some ensemble e ∈ ǫ. Since e has

a majority of correct acceptors, at least one correct acceptor a knows that m was decided at an instance k .

After GST, eventually a correct coordinator c is elected for e , proposing messages every ∆ time units at

least. From the properties of consensus, every correct learner of e will decide such messages, knowing if

there is any gap in the message stream from e . In other words, there will eventually be a message decided

in instance k ′ : k ′ > k in e . Since at least the correct acceptor a knows about m , m can be recovered by

any correct learner l that missed m . This way, l is sure to eventually know about m , being able to deliver it

once a message m ′ : m ′.ts >m .ts has been decided in each ensemble ǫ, which is guaranteed to eventually

happen after GST (Lemma 1).

Proposition 6. (ATOMIC ORDER) No two processes p and q deliver m and m ′ in different orders, and the

delivery order is acyclic.

Proof sketch. Message m is decided in an ensemble e , and the learners of e will decide the same final

timestamp for m , adjusting it if necessary according to a deterministic procedure. The same reasoning hap-

pens to m ′, which is decided in an ensemble e ′. Delivery is based on timestamp order, that is, if m .ts<m ′.ts

(these are final timestamps), m ′ can only be delivered after m . Suppose that p delivers m before m ′, and

that q delivers m ′ before m . One way of this happening could be if p decided that m .ts<m ′.ts, while

q decided that m .ts>m ′.ts, which contradicts the properties of consensus and the deterministic adjust-

ment of timestamps by learners. Another possibility would be that a message m was not decided by a

process p to which both m and m ′ were multicast. This means that there is an instance k of e that p

did not decide. From the algorithm, a learner p does not deliver m before a gap-free sequence of de-

cisions of e has been received by p . Also, assume that messages are delivered in cyclic order: m1 is de-

livered before m2 by p , m2 is delivered before m3 by q , and m3 is delivered before m1 by r . This means that

m1.ts<m2.ts∧m2.ts<m3.ts∧m3.ts<m1.ts, which is a contradiction.
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B Other results

Here, we show some other results that further demonstrate Ridge’s performance. Figure 4 shows the latency

of each protocol with a single client and one group. The goal of running benchmarks with a single client

was to reduce queueing effects as much as possible, so that the latency reported would be mostly due to

the way they are propagated by each protocol. Figure 5 shows the CDF (cumulative distribution function)

of latency for each protocol, with a single client, one group and 32 destinations.
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Figure 4: Latency of each protocol for one group, with one single client.
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Figure 5: Latency CDFs of each protocol for one group, with 32 destinations and one client.

Figure 6 shows the throughput of each protocol with one group and the system at its maximum power.

The throughput at maximum power is usually lower than the maximum throughput because, at the max-

imum throughput, the system is typically overloaded and latency tends to increase sharply with the number

of clients. We used the point of maximum power to report latency (back in Figure 1), maximizing the ra-

tio between throughput and latency. In Figure 7, we can see the latency CDFs for the system at maximum

power, with one group and 32 destinations.

As for multicast, Figure 8 shows the absolute values for maximum throughput for each protocol and in-

creasing number of multicast groups. Figure 9 shows what those numbers mean in terms of scalability effi-

ciency, that is, how close each protocol is to the ideal throughput for each number of groups. To find the ideal

throughput of a protocol with n groups, we multiply the throughput t (1)measured with a single group by

n , and then compare the result with the throughput t (n )measured with n groups. The scalability efficienty

for n group is, then, t (n )/(n × t (1)). Thus, the ideal scalability efficiency for any number of groups is 1.
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Figure 6: Throughput of each protocol for one group, with the system at maximum power.
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Figure 7: Latency CDFs of each protocol, with 32 destinations, with the system at maximum power.
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Figure 8: Maximum throughput of each protocol for different numbers of multicast groups.
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Figure 9: Scalability efficiency of each protocol. A value of 1 for n groups means that the throughput measured with n

groups was n times bigger than the throughput measured with a single group.
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