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Abstract— Although MDE and Hw/Sw Co-design are widely
used to address the design complexity problem, the lack of design
procedures and methodologies joining both concepts restrains
their usage as complementary techniques, thus preventing the
implementation of faster and more robust design cycles. In this
paper we present a practical semi-automated design flow where
both methodologies are merged and exploited to enable a fast
design process targeting highly complex Real-Time Embedded
Systems, executing several tasks on SoC and MPSoC devices,
while allowing the usage of Design Space Exploration, Schedu-
lability Analysis and Estimation techniques.

I. INTRODUCTION

While fabrication technologies for integrated circuits evolve
towards deep sub-micron levels, the semiconductor industry
faces new design and development challenges mainly as a
consequence of technology scaling and the increase in transis-
tors number. This has a strong impact on system complexity
that conflicts with the necessity for quick development of
applications. Lately there has been a trend towards packaging
more components in a single chip (i.e. SoC, NoC, and MPSoC
devices) so to deal with power consumption and interconnect
delay issues. The increased complexity impacts on design,
development and management of new solutions, increasing
both production costs and time to market. Therefore the
creation and development of methodologies and techniques to
support the design of complex systems and speed up related
processes became a research field of main importance.
Hardware-Software Codesing is a well-established methodol-
ogy in the Embedded System community when dealing with
complex systems. In particular it allows distributing activi-
ties of the system between Hardware Components (various
information processing devices), and Software Components
(code executed on those processing units). This methodology
presents a step-based design flow for the design and refinement
of complex systems. The starting point is the behavioral speci-
fication, then a sequence of different optimizations and refine-
ments is performed in order to achieve the best possible final
implementation. Evaluations are carried out using functions of
merit based on design criteria (e.g. performance, power, area
or combinations of them), on solutions still fulfilling the main
functional and non functional requirements.

On the other hand, the Model Driven Engineering (MDE)
methodology, in which an overall system specification guides
the developers along the design process, was traditionally
used by the software engineering community. Appropriate
standardized design languages (e.g. UML [8] ), were used for
this scope. MDE was recently extended also to the Embed-
ded Systems field through appropriate UML profiles (as e.g.
MARTE [5] or SysML [7]). Mechanisms are provided to de-
scribe structural, behavioral and non-functional specifications,
in order to design a real-time embedded system from its model,
supporting the entire development cycle.
MDE and Hw-Sw Codesign offer different complementary
characteristics that in theory could solve many of the problems
related to the increasing systems complexity. Unfortunately
this complementarity is not fully exploited: very few tools
(e.g. [6]) have the capability of joining both domains, and
automated or semi-automated design flows are lacking. This
work addresses such lack studying a practical semi-automated
design flow in which both methodologies are merged and
exploited to enable a fast design process. We aim at helping in
designing Complex Real-Time Embedded Systems, executing
several concurrent and sequential tasks. Our methodology
described in the next sections involves Allocation and Binding
within Design Space Exploration, Schedulability Analysis,
Hw/Sw Partitioning, and Estimation techniques.
This paper is organized as follows, Section II presents the state
of the art and some related works. A general overview on the
theoretical foundations of this project is given in Section III.
Section IV describes our proposal of a semi-automated design
work-flow. Section V analyzes the code generation process and
the transformations defined to obtain SystemC simulators from
MARTE models. Results obtained when this approach was
applied to design a wireless voice link are shown in Section
VI.

II. STATE-OF-THE-ART AND RELATED WORKS

In the last ten years some studies tried to use MDE for
Embedded Systems design. Real time analysis using UML-



SPT profile1 [19] or other proprietary profiles, were carried
out in [26], [25], [18], [15], and [27]. More recent works use
MARTE profile for such scopes. In particular [11] introduces
the Time Model subprofile of MARTE; [30] introduces con-
cisely the Hardware Resource Model profile and then presents
an appropriate methodology to apply it during the hardware
design process; [13] highlights the expressiveness of MARTE
notation for modeling regular distributions and clarifies its
usage through examples and comparisons to other distribution
notations such as in High Performance Fortran.
Hw/Sw Co-design is a major focus in the literature and there
were previous efforts to join such methodology with the
techniques we use in this work. In particular in [17] and [9]
UML-based hardware/software partitioning is explored, while
in [20] the scheduling analysis view is shown as an extension
of the design to improve real-time predictability.
The most important contributions exposing complete design
flows merging Hw/Sw Co-design and MDE can be found
within the Gaspard2 toolchain in [14] and [28], where the
authors present a chain generating a SystemC simulation
tool targeting High Performance Embedded Systems (HPES)
modelled using MARTE profile plus some extensions. Another
interesting work bridging Co-design and MDE is the theoreti-
cal proposal of MoPCoM [3], in [21], where a design process
leads to SystemC code generation from MARTE model speci-
fications. Although Gaspard2 and MoPCoM address some co-
design problems, such as code generation and synthesis, they
don’t really provide support for the complete co-design cycle.
In fact, those approaches leave outside essential concepts like
Design Space Exploration, Allocation, Binding and Schedul-
ing, that will be dealt with our approach.
In this work we started from our previous approaches to join
MDE and Hw/Sw Co-design, and along with the expansion
to support further Co-design techniques of the mathematical
structure describing Design Space Exploration in SysML,
exposed in [16] and [22]; new SystemC code generation rules
were created in addition to those shown in [23] aiming at map-
ping structural characteristics and other MARTE stereotypes.
Finally our framework [24] was extended in order to allow
better structural modelling and to add estimation techniques
and scheduled execution to simulate real-time behavior.

III. THEORETICAL CONTEXT

Our previous works in Embedded Systems and SoC/MPSoC
modeling, exposed in [22], were characterized by the usage of
SysML as main design language, complemented with MARTE
annotations for time and analysis modeling. This combination
offers good flexibility when designing at high levels of abstrac-
tion (see e.g. [21]). In this work we chose to use only MARTE
profile since it allows easier mapping for code generation,
provides embedded systems specific model elements, and is
fully supported by an open source tool, namely Papyrus for
UML, which was used within this project. However, our semi-
automated design flow can be used also with the SysML profile

1The previous standard UML profile (based on UML1.x) to model time.

as the transformations described in [23] can be adapted to
those shown in section VI.

Fig. 1. Hardware/Software Co-design Suggested Design Flow.

As mentioned before, the design process faces several chal-
lenges when dealing with modern hardware-software system.
Application or target system complexity, and proliferation of
numerous design objectives and constraints are the main issues
that are traditionally dealt with Hw/Sw Co-design. A set of
techniques are applied to a model in order to perform multiple
optimizations and refinements, leading the system from an
abstract stage to a physically implementable concept. Figure 1
represents the co-design flow and the components which are
the basis of our MDE design process, as explained below:

• Model: The system is represented by a model specifying
both the Application and the Architecture. The applica-
tions is usually expressed in terms of Task Graphs (e.g.
DFG, CFG), Process Networks (e.g. Kahn Process Net-
works, Synchronous Data Flow) or State Machines (e.g.
StateCharts), depending on the models of computation.
On the other hand the architecture specifies the processing
units and the communication infrastructure of the system.

• Mapping and Optimization: At system level, the mapping
is composed of an Allocation (i.e. the selected processing
units and communication resources), a Binding (i.e. as-
signment of tasks to selected components) and a Schedul-
ing (i.e. execution order for the tasks). The allocation,
binding and scheduling are produced on the basis of a
multi-objective optimization criteria, examined through a
Design Space Exploration (DSE). The process Mapping
- Estimation - Optimization represents a recursive loop
executed until the demanded cost-performance relation
has been reached.

• Estimation: After mapping, an estimation of the design
properties of the next layers of abstraction should be
made, so to anticipate the results due to design decisions
at system-level. Accuracy of the estimation methods is a
key point for a successful design.

• Implementation: The output of the optimization process
is composed of different design points, each one yielding
cost-effective solutions (Pareto Points). The designer,
based on the design objectives, should select one of
these system configurations. The chosen system continues
towards the development stage to be implemented.



IV. CODESIGN-DRIVEN MODELING: INTEGRATED DESIGN
FLOW

This section presents our design methodology, merging a
system engineering process with Hw/Sw Co-design capabili-
ties, as part of a semi-automated procedure. The implemented
workflow, described in Figure 2, features several model-to-
model transformations that allow to make design decisions
and enable simulation of the system behavior. The CIM-PIM-
PSM cycle recommended by MDE is also followed through
the entire process, making it possible to find a specific im-
plementation starting from the system requirements. The flow
starts with a preparation phase, which includes a requirements
analysis, producing a set of functional and non functional
specifications to be used in the model. If such information is
not available it may be gathered through Rapid Prototyping,
Simulation or Analysis of the System. In particular, the tasks
Worst Case Execution Time (WCET) and/or Average Execu-
tion Time (AvgET) are mandatory for a proper design of a
RTES targeting temporal correctness.
Requirements and non functional specifications, as identified
in the previous step, are used as input for the design phase.
The design phase consists of the realization of structural and
behavioral diagrams (corresponding to Co-design Application
and Architecture models) that expose all the possible bindings,
using the MARTE Allocation Modeling to allocate in temporal
or spatial fashion. Timing information is captured by means of
qualitative and quantitative annotations contained in the SAM
(Schedulability Analysis Model) package. In the next section
we will define the design rules in order to further explain
how the MARTE packages, diagrams, and stereotypes are used
inside our design cycle.
The workflow continues in the co-design analysis phase with
the generation of an XMI (XML Metadata Interchange) file
from where data to perform a DSE on the allocation and
binding options is gathered and provided to an Hw/Sw Co-
design tool. All the possible bindings are first examined by
a Schedulability Analysis tool in order to discard the combi-
nations yielding time-incorrect (i.e. non respecting the real-
time deadlines) solutions described within the requirements
specifications. Then, among the remaining design points, after
performing the multi-objective optimization through the DSE,
the designer should select a Pareto-optimal point according
to the desired cost criteria [12]. This design point, described
by means of a UML/MARTE model is composed of an
allocation, a binding and a scheduling. In the Simulation and
Verification phase we generate the corresponding SystemC
simulator necessary to check requirements, behavior and time
correctness of the entire system.

A. Design Rules

Design rules are constraints yielding the selection of a suit-
able subset of MARTE to specify the system. The Embedded
Systems domain is highly heterogeneous and it deals with
several methods of computation, several application specific
concepts and several architectural paradigms. The design rules,

Fig. 2. Semi-automated Design Work-flow.

applied in the design phase of our workflow, are defined as
follows:

• The behavioral components are modeled using both Task
Chains expressed by Activity Diagrams and StateCharts.
Activities are used in a first stage to identify tasks that
are allocated to architectural resources. StateCharts are
used in a second stage to refine the description of such
activities completely defining the behavior.

• The structural components are defined with MARTE
stereotyped classifiers and their communication is speci-
fied using ports and links, through a Composition Struc-
ture Diagram. The Architecture can be modeled at dif-
ferent levels of abstraction using the given MARTE
subpackages, but the specific properties of highly detailed
resources are not taken into account.

• The communication resources are described as any other
processing resource, and their behavior is described as
part of the functional specification.

• The architectural and behavioral components are stereo-
typed as recommended by the SAM package in order to
enable the Schedulability Analysis of the system.

The next subsection shows how the rules converted to MARTE
stereotypes are mapped to a mathematical representation of the
design phase.

B. Mathematical Formalization and MARTE
A new mathematical structure of the model is formulated

based on the theory exposed in [22]. Each term in the
equations is mapped to a MARTE model element and/or a
UML diagram. The formalisms describes the model M as a
four tuple structure, as follows:

M = {A, F, B, T}



Notation MARTE Stereotype UML Element

VA

<<rtUnit>>

Classifier, Object

<<HW ComputingResource>>
<<HW Memory>>

<<HW StorageManager>>
<<HW Communication>>

and derived stereotypes

EA
<<flowPort>> Port

<<MessagePort>>
F <<RTBehavior>> Activity
VF <<rtf>> Action
EF N/A ControlFlow, Transition

B <<allocate>> Realization
<<allocated>>

TABLE I
CORRESPONDENCE BETWEEN THE MATHEMATICAL FORMALISM AND

MARTE ELEMENTS

where:

1) A = (VA , EA) is the architectural specification graph,
composed of available hardware resources VA and com-
munication links between them EA ⊆(VA×VA).

2) F = (VF , EF ) is the functional specification
graph, composed of tasks (procedures) VF and edges
EF ⊆(VF×VF ) representing control flows.

3) B = { (vAi,vF j) ⊆ (VA×VF ) | (vF j ,vF z) ∈ EF ⇒
(vAi,vAk) ∈ EA ∀ (vAk,vF z) ∈ B } is a binding relation
representing all the possible bindings and allocations
respecting the constraints imposed by control flows and
communication links.

4) T ⊆ (B × P) is the model elements characterization with
non-functional properties (NFPs), where P = {p1 . . . pn}
is a set containing NFPs as deadlines, execution times,
priorities and scheduling methods.

This formalization and all its terms are directly mappable
to diagrams and MARTE stereotypes. The main specifica-
tion graphs A and F are described by means of Com-
posite Structure Diagrams and Activity/State Machine Dia-
grams respectively. The components of the P set are defined
as properties from MARTE::NFP subprofile. The NFPs are
given by stereotypes from the Design Model package and
the GAM/SAM subprofiles (e.g. <<gaResourcesPlatform>>,
<<gaWorkloadBehavior>>, <<gaWorkloadEvent>> etc.).
The rest of the structure is mapped to other UML components
and MARTE stereotypes belonging to the Design Model, as
shown in Table I.

C. Co-design Analysis

A Hw/Sw Co-design Analysis is performed to select an
optimal implementation after the design phase has been
completed. Although this work is not for studying in depth
co-design algorithms, it is worth giving a subtle remark
on how those algorithms are reached by our UML/MARTE
Model. This phase consists of a set of Model-to-Model trans-
formations, performed using XSLT rules, so to create new
representations that expose time related information. Hw/Sw
Co-design tools for performing Schedulability Analysis and
Design Space Exploration (i.e. SymTA/S [6], MAST [2],
Cheddar [1], Multicube Explorer [4]) are fed with the resulting

models in order to obtain those Pareto Points that yield time-
correct implementations. Following the design objectives an
implementation candidate should be selected and simulated,
to verify the behavior of the system. The automatic process
generating the simulator is explained within the next section.

V. CODE GENERATION: FROM MARTE MODELS TO
SYSTEMC

The Automatic Code Generation process, explained in Fig-
ure 3, is central for the Simulation and Verification phase.
For such scopes we extended the model-to-text transformation
capabilities of our tool SC2 [24]. A structural-oriented adapta-
tion of the framework based on the Architectural Specification
Graph (A) was included, in order to generate code for the
SystemC macro modules composing the simulator (i.e. Hard-
ware Resources). A scheduler triggering behaviors allocated to
architectural resources is also included as a module connected
to all Hw resources. The code generation from behavioral
components is performed following our original philosophy.
Some changes were introduced in the SystemC mapping rules
and the simulator structure so to improve the communication
between modules making it more flexible.

A. Architectural Extensions

The SC2 project consists of an automatic generator
of simulators which generates RTL SystemC code from
StateCharts based models. The layout of the generated code
is close to a synthesizable application, and this fact can be
exploited when performing several refinements to the model.
The framework is composed of a compiler-like system,
with Front-end, Intermediate Representation (IR-XML) and
Back-end. XSLT transformations are performed in order to
map the XMI file created by the UML tool into a standardized
XML format (front-end) and then from such format to the
identified SystemC template (back-end).
The produced simulators is made of modular SystemC code.
The modules (i.e. SC MODULEs in the code) are bound
to different State Machines Diagrams in the model. In case
a State Machines Diagram contains more FSMs (parallel
components or hierarchical separation), each FSM is mapped
to a SC METHOD inside the same SC MODULE. Injection
of user defined functions, a shell interface for simulation,
and multiple instance creation from a single model are
supported by the tool. While such framework provides a good
solution for mapping behavioral MARTE models, it lacks
mapping rules for architectural components and structures.
The extensions we present in this work are mainly targeted to
support mapping from MARTE architectural information to
SystemC code. We also added the annotation of NFPs inside
the code for evaluation phase.
We modified the front-end so to allow recognition and
parsing of MARTE stereotypes. This procedure involved
also an improvement of the Intermediate Representation
to incorporate such stereotypes (e.g. NFPs used inside the
simulator) and collect when necessary the architectural
information on the system. As we use Papyrus (because it



fully supports MARTE profile), our front-end takes as input
XMI files generated by this tool.
In the back-end more complex changes were needed to adapt
the previous tool to our semi-automated flow. In particular
modifications were necessary to redefine the structure of
the generated simulator and support the inclusion of the
hardware components as containers for behaviors (i.e.
through <<allocate>> stereotype). The SC MODULEs
don’t correspond to State Machines Diagrams as in previous
version, but to MARTE hardware resources. This change led
to modify also the strategy used to communicate between
State Machines. In the previous release it was not possible
to customize inter-module communication. External modules
were created corresponding to signals (declared in a class
diagram); such modules were connected through ports to every
module. In case of multiple instantiation the only possibility
was to declare the variables as local or global. Local variables
were connected to all the module of the particular instance,
while global variables were connected to all the modules of
all instances. In this work we enhanced such mechanism as
we are able to represent the communication links between
hardware resources. Thus the signals are connected to
sc port< > and therefore communicated to the appropriate
hardware block when the architectural diagram dictates so.
Internal variables are mapped to sc signal< > and are only
used inside the particular module.
Behavioral information contained in a State Machine
diagram, mapped to SC METHODs is used with the same
transformation as in our previous tool. We added information
coming from Activity Diagrams to control execution of the
various tasks. A signal enables the scheduling of tasks. This
signal is part of the sensitivity list of each SC METHODs
and triggers its execution. When the task id identifier is
received in the module (through a sc port< > connected to
the scheduler) the corresponding task is first notified and
then unblocked and executed. The scheduler in turn analyzes
which tasks should start at a given time (for each module in
the system), and then triggers the execution. Finally, once the
task has been executed, each module sends a message to the
scheduler to communicate its availability.
If necessary task preemption can be implemented within this
schema. Even though the SC METHODs can’t be stopped
or restarted, our framework supports history. When a parent
active state is created having all the state machines inside
it and history enabled, the transition from this state to a
suspend state emulates preemption. Using SC THREADs
would simplify the matter but it has a cost on simulation
speed and performance as explained in [24].

B. Translation Rules

Mapping of MARTE stereotypes into SystemC code is
essential to enable the translation process. The main rules are
presented in Table II. Such rules refer to immediate mapping
in which it is possible to directly transform a stereotype into a
SystemC artifact. Similar rules have been previously presented

Fig. 3. Automatic Code Generation Procedure.

for UML and SysML transformations into SystemC by several
studies (e.g. [10], [29], [23]).

SystemC MARTE Stereotype

SC MODULE

<<rtUnit>>
<<HW ComputingResource>>

<<HW Memory>>
<<HW StorageManager>>
<<HW Communication>>

and derived stereotypes
sc port< > <<flowPort>>

sc export< > <<MessagePort>>
SC METHOD <<rtf>>
sc signal< > ControlFlow, Transitions

sc clock <<clock>>

TABLE II
MAPPING OF MARTE STEREOTYPES IN SYSTEMC CODE

VI. CASE STUDY

To show application of our complete methodology we take
as a simple case study the design of a bidirectional wireless
voice link with security provisions. We assume that we do not
have the constraint that the two communicating nodes must be
equal, therefore different bindings can be operated for them.
The functionality of the system is as depicted in Figure 4: a
data packet is prepared, security operations are performed and
then the packet is sent through a wireless channel. This packet
is received and appropriately decrypted/authenticated, then it
is decoded.

Our design space is described through the architectural
graph drawn in Figure 4. We can decide whether include a
coprocessor for security or not (both in transmission and in
reception) and whether to develop and use a dedicated radio
protocol (i.e. RadioB), with a much higher cost, or use the
already existing IEEE 802.15.4 (i.e. RadioA). The architectural
graph dictates some constraints caught by the Binding relation,
as an example it is not possible to choose the couple Radio1A
and Radio2B.
The different choices have a different impact on the cost of
the solutions as well as on the execution times. Data referring



Fig. 4. Functional Specification Graph of our application and Architectural
Graph Representation of our Design space

to WCETs are annotated in model through the stereotype
<<GaScenario>> and are shown in the picture as comments
for clarity. Therefore such data can be sent to a scheduler. We
deal with a simple case but our approach supports also more
complex situation with actions that are concurrently executed.
In our case we have a deadline of 40 ms for the entire activity
that we expressed through the <<saEndtoEndFlow>> and
this together with the architectural constraints led us to isolate
valid bindings. The solution we took was to have 802.15.4
radios and security coprocessor mounted only in the first
device.
Having decided our solution the next step consists in refining
the behavioral description completing the State Machine (Stat-
eCharts) diagram corresponding to the desired configuration.
The framework provided us with a working simulator of our
solution. We could use it to try with a characteristic data stream
that the solution we chose respected the design constraints.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we propose a framework that extends our
previous works and brings them together in a wider research
context in order to join the benefits of Hw/Sw Co-design

and MDE. We show how it is possible to compress in a few
diagrams complete information about the design space, feeding
through convenient stereotypes a Hw/Sw Co-design tool to cal-
culate Pareto Points. Moreover behavioral description through
StateCharts is used to automatically generate simulators that
are useful for evaluating systems performance.
Using a convenient subset of MARTE UML profile we support
the design flow from Design Space Exploration and Schedul-
ing until automatic generation of SystemC Executable Models.
Future work involves extension of the supported subset of
MARTE profile and its mapping to more SystemC constructs
as e.g. sc fifo< >.
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